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Abstract

We present a novel word level vector rep-

resentation based on symmetric patterns

(SPs). For this aim we automatically ac-

quire SPs (e.g., “X and Y”) from a large

corpus of plain text, and generate vectors

where each coordinate represents the co-

occurrence in SPs of the represented word

with another word of the vocabulary. Our

representation has three advantages over

existing alternatives: First, being based on

symmetric word relationships, it is highly

suitable for word similarity prediction.

Particularly, on the SimLex999 word simi-

larity dataset, our model achieves a Spear-

man’s ρ score of 0.517, compared to 0.462

of the state-of-the-art word2vec model. In-

terestingly, our model performs exception-

ally well on verbs, outperforming state-

of-the-art baselines by 20.2–41.5%. Sec-

ond, pattern features can be adapted to the

needs of a target NLP application. For ex-

ample, we show that we can easily control

whether the embeddings derived from SPs

deem antonym pairs (e.g. (big,small)) as

similar or dissimilar, an important distinc-

tion for tasks such as word classification

and sentiment analysis. Finally, we show

that a simple combination of the word sim-

ilarity scores generated by our method and

by word2vec results in a superior predic-

tive power over that of each individual

model, scoring as high as 0.563 in Spear-

man’s ρ on SimLex999. This emphasizes

the differences between the signals cap-

tured by each of the models.

1 Introduction

In the last decade, vector space modeling (VSM)

for word representation (a.k.a word embedding),

has become a key tool in NLP. Most approaches to

word representation follow the distributional hy-

pothesis (Harris, 1954), which states that words

that co-occur in similar contexts are likely to have

similar meanings.

VSMs differ in the way they exploit word co-

occurrence statistics. Earlier works (see (Turney et

al., 2010)) encode this information directly in the

features of the word vector representation. More

Recently, Neural Networks have become promi-

nent in word representation learning (Bengio et

al., 2003; Collobert and Weston, 2008; Collobert

et al., 2011; Mikolov et al., 2013a; Pennington et

al., 2014, inter alia). Most of these models aim

to learn word vectors that maximize a language

model objective, thus capturing the tendencies of

the represented words to co-occur in the training

corpus. VSM approaches have resulted in highly

useful word embeddings, obtaining high quality

results on various semantic tasks (Baroni et al.,

2014).

Interestingly, the impressive results of these

models are achieved despite the shallow linguis-

tic information most of them consider, which is

limited to the tendency of words to co-occur to-

gether in a pre-specified context window. Particu-

larly, very little information is encoded about the

syntactic and semantic relations between the par-

ticipating words, and, instead, a bag-of-words ap-

proach is taken.1

This bag-of-words approach, however, comes

with a cost. As recently shown by Hill et al.

(2014), despite the impressive results VSMs that

take this approach obtain on modeling word as-

sociation, they are much less successful in model-

ing word similarity. Indeed, when evaluating these

VSMs with datasets such as wordsim353 (Finkel-

stein et al., 2001), where the word pair scores re-

1A few recent VSMs go beyond the bag-of-words as-
sumption and consider deeper linguistic information in word
representation. We address this line of work in Section 2.



flect association rather than similarity (and there-

fore the (cup,coffee) pair is scored higher than

the (car,train) pair), the Spearman correlation be-

tween their scores and the human scores often

crosses the 0.7 level. However, when evaluat-

ing with datasets such as SimLex999 (Hill et al.,

2014), where the pair scores reflect similarity, the

correlation of these models with human judgment

is below 0.5 (Section 6).

In order to address the challenge in model-

ing word similarity, we propose an alternative,

pattern-based, approach to word representation. In

previous work patterns were used to represent a

variety of semantic relations, including hyponymy

(Hearst, 1992), meronymy (Berland and Charniak,

1999) and antonymy (Lin et al., 2003). Here, in

order to capture similarity between words, we use

Symmetric patterns (SPs), such as “X and Y” and

“X as well as Y”, where each of the words in the

pair can take either the X or the Y position. Sym-

metric patterns have shown useful for representing

similarity between words in various NLP tasks in-

cluding lexical acquisition (Widdows and Dorow,

2002), word clustering (Davidov and Rappoport,

2006) and classification of words to semantic cat-

egories (Schwartz et al., 2014). However, to the

best of our knowledge, they have not been applied

to vector space word representation.

Our representation is constructed in the follow-

ing way (Section 3). For each word w, we con-

struct a vector v of size V , where V is the size of

the lexicon. Each element in v represents the co-

occurrence in SPs of w with another word in the

lexicon, which results in a sparse word represen-

tation. Unlike most previous works that applied

SPs to NLP tasks, we do not use a hard coded set

of patterns. Instead, we extract a set of SPs from

plain text using an unsupervised algorithm (Davi-

dov and Rappoport, 2006). This substantially re-

duces the human supervision our model requires

and makes it applicable for practically every lan-

guage for which a large corpus of text is available.

Our SP-based word representation is flexible.

Particularly, by exploiting the semantics of the

pattern based features, our representation can be

adapted to fit the specific needs of target NLP ap-

plications. In Section 4 we exemplify this prop-

erty through the ability of our model to con-

trol whether its word representations will deem

antonyms similar or dissimilar. Antonyms are

words that have opposite semantic meanings (e.g.,

(small,big)), yet, due to their tendency to co-occur

in the same context, they are often assigned sim-

ilar vectors by co-occurrence based representa-

tion models (Section 6). Controlling the model

judgment of antonym pairs is highly useful for

NLP tasks: in some tasks, like word classification,

antonym pairs such as (small,big) belong to the

same class (size adjectives), while in other tasks,

like sentiment analysis, identifying the difference

between them is crucial. As discussed in Section

4, we believe that this flexibility holds for various

other pattern types and for other lexical semantic

relations (e.g. hypernymy, the is-a relation, which

holds in word pairs such as (dog,animal)).

We experiment (Section 6) with the SimLex999

dataset (Hill et al., 2014), consisting of 999 pairs

of words annotated by human subjects for similar-

ity. When comparing the correlation between the

similarity scores derived from our learned repre-

sentation and the human scores, our representation

receives a Spearman correlation coefficient score

(ρ) of 0.517, outperforming six strong baselines,

including the state-of-the-art word2vec (Mikolov

et al., 2013a) embeddings, by 5.5–16.7%. Our

model performs particularly well on the verb por-

tion of SimLex999 (222 verb pairs), achieving a

Spearman score of 0.578 compared to scores of

0.163–0.376 of the baseline models, an astonish-

ing improvement of 20.2–41.5%. Our analysis re-

veals that the antonym adjustment capability of

our model is vital for its success.

We further demonstrate that the word pair

scores produced by our model can be combined

with those of word2vec to get an improved pre-

dictive power for word similarity. The combined

scores result in a Spearman’s ρ correlation of

0.563, a further 4.6% improvement compared to

our model, and a total of 10.1–21.3% improve-

ment over the baseline models. This suggests that

the models provide complementary information

about word semantics.

2 Related Work

Vector Space Models for Lexical Semantics.

Research on vector spaces for word representation

dates back to the early 1970’s (Salton, 1971). In

traditional methods, a vector for each word w is

generated, with each coordinate representing the

co-occurrence of w and another context item of in-

terest – most often a word but possibly also a sen-

tence, a document or other items. The feature rep-



resentation generated by this basic construction is

sometimes post-processed using techniques such

as Positive Pointwise Mutual Information (PPMI)

normalization and dimensionality reduction. For

recent surveys, see (Turney et al., 2010; Clark,

2012; Erk, 2012).

Most VSM works share two important charac-

teristics. First, they encode co-occurrence statis-

tics from an input corpus directly into the word

vector features. Second, they consider very lit-

tle information on the syntactic and semantic rela-

tions between the represented word and its context

items. Instead, a bag-of-words approach is taken.

Recently, there is a surge of work focusing on

Neural Network (NN) algorithms for word repre-

sentations learning (Bengio et al., 2003; Collobert

and Weston, 2008; Mnih and Hinton, 2009; Col-

lobert et al., 2011; Dhillon et al., 2011; Mikolov

et al., 2013a; Mnih and Kavukcuoglu, 2013; Le-

bret and Collobert, 2014; Pennington et al., 2014).

Like the more traditional models, these works also

take the bag-of-words approach, encoding only

shallow co-occurrence information between lin-

guistic items. However, they encode this informa-

tion into their objective, often a language model,

rather than directly into the features.

Consider, for example, the successful word2vec

model (Mikolov et al., 2013a). Its continuous-bag-

of-words architecture is designed to predict a word

given its past and future context. The resulted ob-

jective function is:

max

T∑

t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c)

where T is the number of words in the corpus,

and c is a pre-determined window size. Another

word2vec architecture, skip-gram, aims to predict

the past and future context given a word. Its ob-

jective is:

max

T∑

t=1

∑

−c≤j≤c,j 6=0

log p(wt+j |wt)

In both cases the objective function relates to the

co-occurrence of words within a context window.

A small number of works went beyond the bag-

of-words assumption, considering deeper relation-

ships between linguistic items. The Strudel sys-

tem (Baroni et al., 2010) represents a word using

the clusters of lexico-syntactic patterns in which

it occurs. Murphy et al. (2012) represented words

through their co-occurrence with other words in

syntactic dependency relations, and then used the

Non-Negative Sparse Embedding (NNSE) method

to reduce the dimension of the resulted represen-

tation. Levy and Goldberg (2014) extended the

skip-gram word2vec model with negative sam-

pling (Mikolov et al., 2013b) by basing the word

co-occurrence window on the dependency parse

tree of the sentence. Bollegala et al. (2015) re-

placed bag-of-words contexts with various pat-

terns (lexical, POS and dependency).

We introduce a symmetric pattern based ap-

proach to word representation which is particu-

larly suitable for capturing word similarity. In ex-

periments we show the superiority of our model

over six models of the above three families: (a)

bag-of-words models that encode co-occurrence

statistics directly in features; (b) NN models that

implement the bag-of-words approach in their ob-

jective; and (c) models that go beyond the bag-of-

words assumption.

Similarity vs. Association Most recent VSM

research does not distinguish between association

and similarity in a principled way, although no-

table exceptions exist. Turney (2012) constructed

two VSMs with the explicit goal of capturing ei-

ther similarity or association. A classifier that

uses the output of these models was able to pre-

dict whether two concepts are associated, sim-

ilar or both. Agirre et al. (2009) partitioned

the wordsim353 dataset into two subsets, one fo-

cused on similarity and the other on association.

They demonstrated the importance of the associ-

ation/similarity distinction by showing that some

VSMs perform relatively well on one subset while

others perform comparatively better on the other.

Recently, Hill et al. (2014) presented the Sim-

Lex999 dataset consisting of 999 word pairs

judged by humans for similarity only. The partic-

ipating words belong to a variety of POS tags and

concreteness levels, arguably providing a more re-

alistic sample of the English lexicon. Using their

dataset the authors show the tendency of VSMs

that take the bag-of-words approach to capture as-

sociation much better than similarity. This obser-

vation motivates our work.

Symmetric Patterns. Patterns (symmetric or

not) were found useful in a variety of NLP

tasks, including identification of word relations

such as hyponymy (Hearst, 1992), meronymy

(Berland and Charniak, 1999) and antonymy (Lin

et al., 2003). Patterns have also been applied to



tackle sentence level tasks such as identification

of sarcasm (Tsur et al., 2010), sentiment analysis

(Davidov et al., 2010) and authorship attribution

(Schwartz et al., 2013).

Symmetric patterns (SPs) were employed in var-

ious NLP tasks to capture different aspects of word

similarity. Widdows and Dorow (2002) used SPs

for the task of lexical acquisition. Dorow et al.

(2005) and Davidov and Rappoport (2006) used

them to perform unsupervised clustering of words.

Kozareva et al. (2008) used SPs to classify proper

names (e.g., fish names, singer names). Feng et

al. (2013) used SPs to build a connotation lexicon,

and Schwartz et al. (2014) used SPs to perform

minimally supervised classification of words into

semantic categories.

While some of these works used a hand crafted

set of SPs (Widdows and Dorow, 2002; Dorow et

al., 2005; Kozareva et al., 2008; Feng et al., 2013),

Davidov and Rappoport (2006) introduced a fully

unsupervised algorithm for the extraction of SPs.

Here we apply their algorithm in order to reduce

the required human supervision and demonstrate

the language independence of our approach.

Antonyms. A useful property of our model is

its ability to control the representation of antonym

pairs. Outside the VSM literature several works

identified antonyms using word co-occurrence

statistics, manually and automatically induced pat-

terns, the WordNet lexicon and thesauri (Lin et al.,

2003; Turney, 2008; Wang et al., 2010; Moham-

mad et al., 2013; Schulte im Walde and Koper,

2013; Roth and Schulte im Walde, 2014). Re-

cently, Yih et al. (2012), Chang et al. (2013)

and Ono et al. (2015) proposed word represen-

tation methods that assign dissimilar vectors to

antonyms. Unlike our unsupervised model, which

uses plain text only, these works used the WordNet

lexicon and a thesaurus.

3 Model

In this section we describe our approach for gener-

ating pattern-based word embeddings. We start by

describing symmetric patterns (SPs), continue to

show how SPs can be acquired automatically from

text, and, finally, explain how these SPs are used

for word embedding construction.

3.1 Symmetric Patterns

Lexico-syntactic patterns are sequences of words

and wildcards (Hearst, 1992). Examples of pat-

Candidate Examples of Instances

“X of Y” “point of view”, “years of age”

“X the Y” “around the world”, “over the past”

“X to Y” “nothing to do”, “like to see”

“X and Y” “men and women”, “oil and gas”

“X in Y” “keep in mind”, “put in place”

“X of the Y” “rest of the world”, “end of the war”

Table 1:
The six most frequent pattern candidates that contain exactly

two wildcards and 1-3 words in our corpus.

terns include “X such as Y”, “X or Y” and “X is

a Y”. When patterns are instantiated in text, wild-

cards are replaced by words. For example, the pat-

tern “X is a Y”, with the X and Y wildcards, can

be instantiated in phrases like “Guffy is a dog”.

Symmetric patterns are a special type of patterns

that contain exactly two wildcards and that tend

to be instantiated by wildcard pairs such that each

member of the pair can take the X or the Y posi-

tion. For example, the symmetry of the pattern “X

or Y” is exemplified by the semantically plausible

expressions “cats or dogs” and “dogs or cats”.

Previous works have shown that words that co-

occur in SPs are semantically similar (Section 2).

In this work we use symmetric patterns to repre-

sent words. Our hypothesis is that such represen-

tation would reflect word similarity (i.e., that sim-

ilar vectors would represent similar words). Our

experiments show that this is indeed the case.

Symmetric Patterns Extraction. Most works

that used SPs manually constructed a set of such

patterns. The most prominent patterns in these

works are “X and Y” and “X or Y” (Widdows and

Dorow, 2002; Feng et al., 2013). In this work we

follow (Davidov and Rappoport, 2006) and apply

an unsupervised algorithm for the automatic ex-

traction of SPs from plain text.

This algorithm starts by defining an SP template

to be a sequence of 3-5 tokens, consisting of ex-

actly two wildcards, and 1-3 words. It then tra-

verses a corpus, looking for frequent pattern can-

didates that match this template. Table 1 shows the

six most frequent pattern candidates, along with

common instances of these patterns.

The algorithm continues by traversing the pat-

tern candidates and selecting a pattern p if a large

portion of the pairs of words wi, wj that co-occur

in p co-occur both in the (X = wi,Y = wj) form

and in the (X = wj ,Y = wi) form. Consider, for

example, the pattern candidate “X and Y”, and the

pair of words “cat”,“dog”. Both pattern instances



“cat and dog” and “dog and cat” are likely to be

seen in a large corpus. If this property holds for a

large portion2 of the pairs of words that co-occur

in this pattern, it is selected as symmetric. On the

other hand, the pattern candidate “X of Y” is in

fact asymmetric: pairs of words such as “point”,

“view” tend to come only in the (X = “point”,Y

= “view”) form and not the other way around.

The reader is referred to (Davidov and Rappoport,

2006) for a more formal description of this algo-

rithm. The resulting pattern set we use in this pa-

per is “X and Y”, “X or Y”, “X and the Y”, “from

X to Y”, “X or the Y”, “X as well as Y”, “X or a

Y”,“X rather than Y”, “X nor Y”, “X and one Y”,

“either X or Y”.

3.2 SP-based Word Embeddings

In order to generate word embeddings, our model

requires a large corpus C , and a set of SPs P . The

model first computes a symmetric matrix M of

size V × V (where V is the size of the lexicon).

In this matrix, Mi,j is the co-occurrence count of

both wi,wj and wj ,wi in all patterns p ∈ P . For

example, if wi,wj co-occur 1 time in p1 and 3

times in p5, while wj ,wi co-occur 7 times in p9,

then Mi,j = Mj,i = 1 + 3 + 7 = 11. We then

compute the Positive Pointwise Mutual Informa-

tion (PPMI) of M , denoted by M∗.3 The vector

representation of the word wi (denoted by vi) is

the ith row in M∗.

Smoothing. In order to decrease the sparsity of

our representation, we apply a simple smoothing

technique. For each word wi, W
n
i denotes the top

n vectors with the smallest cosine-distance from

vi. We define the word embedding of wi to be

v′i = vi + α ·
∑

v∈Wn

i

v

where α is a smoothing factor.4 This process re-

duces the sparsity of our vector representation. For

example, when n = 0 (i.e., no smoothing), the

average number of non-zero values per vector is

only 0.3K (where the vector size is ∼250K). When

n = 250, this number reaches ∼14K.

2We use 15% of the pairs of words as a threshold.
3PPMI was shown useful for various co-occurrence mod-

els (Baroni et al., 2014).
4We tune n and α using a development set (Section 5).

Typical values for n and α are 250 and 7, respectively.

4 Antonym Representation

In this section we show how our model allows us

to adjust the representation of pairs of antonyms to

the needs of a subsequent NLP task. This property

will later be demonstrated to have a substantial im-

pact on performance.

Antonyms are pairs of words with an opposite

meaning (e.g., (tall,short)). As the members of

an antonym pair tend to occur in the same con-

text, their word embeddings are often similar. For

example, in the skip-gram model (Mikolov et al.,

2013a), the score of the (accept,reject) pair is 0.73,

and the score of (long,short) is 0.71. Our SP-based

word embeddings also exhibit a similar behavior.

The question of whether antonyms are simi-

lar or not is not a trivial one. On the one hand,

some NLP tasks might benefit from representing

antonyms as similar. For example, in word classi-

fication tasks, words such as “big” and “small” po-

tentially belong to the same class (size adjectives),

and thus representing them as similar is desired.

On the other hand, antonyms are very dissimilar

by definition. This distinction is crucial in tasks

such as search, where a query such as “tall build-

ings” might be poorly processed if the representa-

tions of “tall” and “short” are similar.

In light of this, we construct our word embed-

dings to be controllable of antonyms. That is, our

model contains an antonym parameter that can be

turned on in order to generate word embeddings

that represent antonyms as dissimilar, and turned

off to represent them as similar.

To implement this mechanism, we follow (Lin

et al., 2003), who showed that two patterns are par-

ticularly indicative of antonymy – “from X to Y”

and “either X or Y” (e.g., “from bottom to top”,

“either high or low”). As it turns out, these two

patterns are also symmetric, and are discovered by

our automatic algorithm. Henceforth, we refer to

these two patterns as antonym patterns.

Based on this observation, we present a variant

of our model, which is designed to assign dissim-

ilar vector representations to antonyms. We de-

fine two new matrices: MSP and MAP , which are

computed similarly to M∗ (see Section 3.2), only

with different SP sets. MSP is computed using

the original set of SPs, excluding the two antonym

patterns, while MAP is computed using the two

antonym patterns only.

Then, we define an antonym-sensitive, co-



occurrence matrix M+AN to be

M+AN = MSP − β ·MAP

where β is a weighting parameter.5 Similarly to

M∗, the antonym-sensitive word representation of

the ith word is the ith row in M+AN .

Discussion. The case of antonyms presented in

this paper is an example of one relation that a

pattern based representation model can control.

This property can be potentially extended to addi-

tional word relations, as long as they can be iden-

tified using patterns. Consider, for example, the

hypernymy relation (is-a, as in the (apple,fruit)

pair). This relation can be accurately identified

using patterns such as “X such as Y” and “X like

Y” (Hearst, 1992). Consequently, it is likely that

a pattern-based model can be adapted to control

its predictions with respect to this relation using

a method similar to the one we use to control

antonym representation. We consider this a strong

motivation for a deeper investigation of pattern-

based VSMs in future work.

We next turn to empirically evaluate the perfor-

mance of our model in estimating word similarity.

5 Experimental Setup

5.1 Datasets

Evaluation Dataset. We experiment with the

SimLex999 dataset (Hill et al., 2014),6 consisting

of 999 pairs of words. Each pair in this dataset

was annotated by roughly 50 human subjects, who

were asked to score the similarity between the pair

members. SimLex999 has several appealing prop-

erties, including its size, part-of-speech diversity,

and diversity in the level of concreteness of the

participating words.

We follow a 10-fold cross-validation experi-

mental protocol. In each fold, we randomly sam-

ple 25% of the SimLex999 word pairs (∼250

pairs) and use them as a development set for pa-

rameter tuning. We use the remaining 75% of the

pairs (∼750 pairs) as a test set. We report the av-

erage of the results we got in the 10 folds.

Training Corpus. We use an 8G words corpus,

constructed using the word2vec script.7 Through

this script we also apply a pre-processing step

5We tune β using a development set (Section 5). Typical
values are 7 and 10.

6
www.cl.cam.ac.uk/˜fh295/simlex.html

7
code.google.com/p/word2vec/source/

browse/trunk/demo-train-big-model-v1.sh

which employs the word2phrase tool (Mikolov

et al., 2013c) to merge common word pairs and

triples to expression tokens. Our corpus consists

of four datasets: (a) The 2012 and 2013 crawled

news articles from the ACL 2014 workshop on sta-

tistical machine translation (Bojar et al., 2014);8

(b) The One Billion Word Benchmark of Chelba

et al. (2013);9 (c) The UMBC corpus (Han et al.,

2013);10 and (d) The September 2014 dump of the

English Wikipedia.11

5.2 Baselines

We compare our model against six baselines: one

that encodes bag-of-words co-occurrence statistics

into its features (model 1 below), three NN models

that encode the same type of information into their

objective function (models 2-4), and two mod-

els that go beyond the bag-of-words assumption

(models 5-6). Unless stated otherwise, all models

are trained on our training corpus.

1. BOW. A simple model where each coordi-

nate corresponds to the co-occurrence count of the

represented word with another word in the train-

ing corpus. The resulted features are re-weighted

according to PPMI. The model’s window size pa-

rameter is tuned on the development set.12

2-3. word2vec. The state-of-the-art word2vec

toolkit (Mikolov et al., 2013a)13 offers two

word embedding architectures: continuous-bag-

of-words (CBOW) and skip-gram. We follow the

recommendations of the word2vec script for set-

ting the parameters of both models, and tune the

window size on the development set.14

4. GloVe. GloVe (Pennington et al., 2014)15 is

a global log-bilinear regression model for word

embedding generation, which trains only on the

nonzero elements in a co-occurrence matrix. We

use the parameters suggested by the authors, and

tune the window size on the development set.16

8
http://www.statmt.org/wmt14/training-

monolingual-news-crawl/
9
http://www.statmt.org/lm-benchmark/

1-billion-word-language-modeling-

benchmark-r13output.tar.gz
10http://ebiquity.umbc.edu/redirect/to/

resource/id/351/UMBC-webbase-corpus
11
dumps.wikimedia.org/enwiki/latest/

enwiki-latest-pages-articles.xml.bz2
12The value 2 is almost constantly selected.
13
https://code.google.com/p/word2vec/

14Window size 2 is generally selected for both models.
15nlp.stanford.edu/projects/glove/
16Window size 2 is generally selected.



5. NNSE. The NNSE model (Murphy et al.,

2012). As no full implementation of this model

is available online, we use the off-the-shelf em-

beddings available at the authors’ website,17 tak-

ing the full document and dependency model with

2500 dimensions. Embeddings were computed us-

ing a dataset about twice as big as our corpus.

6. Dep. The modified, dependency-based, skip-

gram model (Levy and Goldberg, 2014). To gen-

erate dependency links, we use the Stanford POS

Tagger (Toutanova et al., 2003)18 and the MALT

parser (Nivre et al., 2006).19 We follow the pa-

rameters suggested by the authors.

5.3 Evaluation

For evaluation we follow the standard VSM litera-

ture: the score assigned to each pair of words by a

model m is the cosine similarity between the vec-

tors induced by m for the participating words. m’s

quality is evaluated by computing the Spearman

correlation coefficient score (ρ) between the rank-

ing derived from m’s scores and the one derived

from the human scores.

6 Results

Main Result. Table 2 presents our results. Our

model outperforms the baselines by a margin of

5.5–16.7% in the Spearman’s correlation coeffi-

cient (ρ). Note that the capability of our model to

control antonym representation has a substantial

impact, boosting its performance from ρ = 0.434
when the antonym parameter is turned off to ρ =
0.517 when it is turned on.

Model Combination. We turn to explore

whether our pattern-based model and our best

baseline, skip-gram, which implements a bag-of-

words approach, can be combined to provide an

improved predictive power.

For each pair of words in the test set, we take a

linear combination of the cosine similarity score

computed using our embeddings and the score

computed using the skip-gram (SG) embeddings:

f+(wi, wj) = γ·fSP (wi, wj)+(1−γ)·fSG(wi, wj)

In this equation f<m>(wi, wj) is the cosine

similarity between the vector representations of

words wi and wj according to model m, and γ is a

17
http://www.cs.cmu.edu/˜bmurphy/NNSE/

18nlp.stanford.edu/software/
19
http://www.maltparser.org/index.html

Model Spearman’s ρ
GloVe 0.35

BOW 0.423

CBOW 0.43

Dep 0.436

NNSE 0.455

skip-gram 0.462

SP(−) 0.434

SP(+) 0.517

Joint (SP(+), skip-gram) 0.563

Average Human Score 0.651

Table 2:
Spearman’s ρ scores of our SP-based model with the antonym

parameter turned on (SP(+)) or off (SP(−)) and of the base-

lines described in Section 5.2. Joint (SP(+), skip-gram) is
an interpolation of the scores produced by skip-gram and our

SP(+) model. Average Human Score is the average correla-
tion of a single annotator with the average score of all anno-
tators, taken from (Hill et al., 2014).

weighting parameter tuned on the development set

(a common value is 0.8).

As shown in Table 2, this combination forms the

top performing model on SimLex999, achieving a

Spearman’s ρ score of 0.563. This score is 4.6%

higher than the score of our model, and a 10.1–

21.3% improvement compared to the baselines.

wordsim353 Experiments. The wordsim353

dataset (Finkelstein et al., 2001) is frequently used

for evaluating word representations. In order to

be compatible with previous work, we experiment

with this dataset as well. As our word embeddings

are designed to support word similarity rather than

relatedness, we focus on the similarity subset of

this dataset, according to the division presented in

(Agirre et al., 2009).

As noted by (Hill et al., 2014), the word pair

scores in both subsets of wordsim353 reflect word

association. This is because the two subsets cre-

ated by (Agirre et al., 2009) keep the original

wordsim353 scores, produced by human evalua-

tors that were instructed to score according to as-

sociation rather than similarity. Consequently, we

expect our model to perform worse on this dataset

compared to a dataset, such as SimLex999, whose

annotators were guided to score word pairs ac-

cording to similarity.

Contrary to SimLex999, wordsim353 treats

antonyms as similar. For example, the similarity

score of the (life,death) and (profit,loss) pairs are

7.88 and 7.63 respectively, on a 0-10 scale. Con-

sequently, we turn the antonym parameter off for

this experiment.

Table 3 presents the results. As expected, our



Model Spearman’s ρ
GloVe 0.677

Dep 0.712

BOW 0.729

CBOW 0.734

NNSE 0.78

skip-gram 0.792

SP(−) 0.728

Average Human Score 0.756

Table 3:
Spearman’s ρ scores for the similarity portion of wordsim353

(Agirre et al., 2009). SP(−) is our model with the antonym
parameter turned off. Other abbreviations are as in Table 2.

Model Adj. Nouns Verbs

GloVe 0.571 0.377 0.163

Dep 0.54 0.449 0.376

BOW 0.548 0.451 0.276

CBOW 0.579 0.48 0.252

NNSE 0.594 0.487 0.318

skip-gram 0.604 0.501 0.307

SP(+) 0.663 0.497 0.578

Table 4:
A POS-based analysis of the various models. Numbers are
the Spearman’s ρ scores of each model on each of the respec-
tive portions of SimLex999.

model is not as successful on a dataset that doesn’t

reflect pure similarity. Yet, it still crosses the ρ =
0.7 score, a quite high performance level.

Part-of-Speech Analysis. We next perform a

POS-based evaluation of the participating models,

using the three portions of the SimLex999: 666

pairs of nouns, 222 pairs of verbs, and 111 pairs of

adjectives. Table 4 indicates that our SP(+) model

is exceptionally successful in predicting verb and

adjective similarity. On verbs, SP(+) obtains a

score of ρ = 0.578, a 20.2–41.5% improvement

over the baselines. On adjectives, SP(+) performs

even better (ρ = 0.663), an improvement of 5.9–

12.3% over the baselines. On nouns, SP(+) is

second only to skip-gram, though with very small

margin (0.497 vs. 0.501), and is outperforming the

other baselines by 1–12%. The lower performance

of our model on nouns might partially explain its

relatively low performance on wordsim353, which

is composed exclusively of nouns.

Analysis of Antonyms. We now turn to a qual-

itative analysis, in order to understand the im-

pact of our modeling decisions on the scores of

antonym word pairs. Table 5 presents examples of

antonym pairs taken from the SimLex999 dataset,

along with their relative ranking among all pairs

in the set, as judged by our model (SP(+) with

β = 10 or SP(−) with β = −1) and by the best

Pair of Words
SP

skip-gram
+AN -AN

new - old 1 6 6

narrow - wide 1 7 8

necessary - unnecessary 2 2 9

bottom - top 3 8 10

absence - presence 4 7 9

receive - send 1 9 8

fail - succeed 1 8 6

Table 5:
Examples of antonym pairs and their decile in the similarity
ranking of our SP model with the antonym parameter turned
on (+AN, β=10) or off (-AN, β=-1), and of the skip-gram
model, the best baseline. All examples are judged in the low-
est decile (1) by SimLex999’s annotators.

baseline representation (skip-gram). Each pair of

words is assigned a score between 1 and 10 by

each model, where a score of M means that the

pair is ranked at the M ’th decile. The examples

in the table are taken from the first (lowest) decile

according to SimLex999’s human evaluators. The

table shows that when the antonym parameter is

off, our model generally recognizes antonyms as

similar. In contrast, when the parameter is on,

ranks of antonyms substantially decrease.

Antonymy as Word Analogy. One of the most

notable features of the skip-gram model is that

some geometric relations between its vectors

translate to semantic relations between the repre-

sented words (Mikolov et al., 2013c), e.g.:

vwoman − vman + vking ≈ vqueen

It is therefore possible that a similar method can

be applied to capture antonymy – a useful property

that our model was demonstrated to have.

To test this hypothesis, we generated a set of

200 analogy questions of the form ”X - Y + Z =

?” where X and Y are antonyms, and Z is a word

with an unknown antonym.20 Example questions

include: “stupid - smart + life = ?” (death) and

“huge - tiny + arrive = ?” (leave). We applied

the standard word analogy evaluation (Mikolov et

al., 2013c) on this dataset with the skip-gram em-

beddings, and found that results are quite poor:

3.5% accuracy (compared to an average 56% ac-

curacy this model obtains on a standard word anal-

ogy dataset (Mikolov et al., 2013a)). Given these

results, the question of whether skip-gram is capa-

ble of accounting for antonyms remains open.

20Two human annotators selected a list of potential
antonym pairs from SimLex999 and wordsim353. We took
the intersection of their selections (26 antonym pairs) and
randomly generated 200 analogy questions, each containing
two antonym pairs. The dataset is submitted with the paper.



7 Conclusions

We presented a symmetric pattern based model for

word vector representation. On SimLex999, our

model is superior to six strong baselines, including

the state-of-the-art word2vec skip-gram model by

as much as 5.5–16.7% in Spearman’s ρ score. We

have shown that this gain is largely attributed to

the remarkably high performance of our model on

verbs, where it outperforms all baselines by 20.2–

41.5%. We further demonstrated the adaptabil-

ity of our model to antonym judgment specifica-

tions, and its complementary nature with respect

to word2vec.

In future work we intend to extend our pattern-

based word representation framework beyond

symmetric patterns. As discussed in Section 4,

other types of patterns have the potential to further

improve the expressive power of word vectors. A

particularly interesting challenge is to enhance our

pattern-based approach with bag-of-words infor-

mation, thus enjoying the provable advantages of

both frameworks.
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