
The Structured Weighted Violations Perceptron Algorithm

Rotem Dror and Roi Reichart
Faculty of Industrial Engineering and Management, Technion, IIT
{rtmdrr@campus|roiri@ie}.technion.ac.il

Abstract

We present the Structured Weighted Violations
Perceptron (SWVP) algorithm, a new struc-
tured prediction algorithm that generalizes the
Collins Structured Perceptron (CSP, (Collins,
2002)). Unlike CSP, the update rule of SWVP
explicitly exploits the internal structure of the
predicted labels. We prove the convergence
of SWVP for linearly separable training sets,
provide mistake and generalization bounds,
and show that in the general case these bounds
are tighter than those of the CSP special case.
In synthetic data experiments with data drawn
from an HMM, various variants of SWVP
substantially outperform its CSP special case.
SWVP also provides encouraging initial de-
pendency parsing results.

1 Introduction

The structured perceptron ((Collins, 2002), hence-
forth denoted CSP) is a prominent training algo-
rithm for structured prediction models in NLP, due
to its effective parameter estimation and simple im-
plementation. It has been utilized in numerous NLP
applications including word segmentation and POS
tagging (Zhang and Clark, 2008), dependency pars-
ing (Koo and Collins, 2010; Goldberg and Elhadad,
2010; Martins et al., 2013), semantic parsing (Zettle-
moyer and Collins, 2007) and information extrac-
tion (Hoffmann et al., 2011; Reichart and Barzilay,
2012), if to name just a few.

Like some training algorithms in structured pre-
diction (e.g. structured SVM (Taskar et al., 2004;
Tsochantaridis et al., 2005), MIRA (Crammer and
Singer, 2003) and LaSo (Daumé III and Marcu,

2005)), CSP considers in its update rule the differ-
ence between complete predicted and gold standard
labels (Sec. 2). Unlike others (e.g. factored MIRA
(McDonald et al., 2005b; McDonald et al., 2005a)
and dual-loss based methods (Meshi et al., 2010)) it
does not exploit the structure of the predicted label.
This may result in valuable information being lost.

Consider, for example, the gold and predicted de-
pendency trees of Figure 1. The substantial differ-
ence between the trees may be mostly due to the dif-
ference in roots (are and worse, respectively). Pa-
rameter update w.r.t this mistake may thus be more
useful than an update w.r.t the complete trees.

In this work we present a new perceptron algo-
rithm with an update rule that exploits the struc-
ture of a predicted label when it differs from the
gold label (Section 3). Our algorithm is called The
Structured Weighted Violations Perceptron (SWVP)
as its update rule is based on a weighted sum of up-
dates w.r.t violating assignments and non-violating
assignments: assignments to the input example, de-
rived from the predicted label, that score higher (for
violations) and lower (for non-violations) than the
gold standard label according to the current model.

Our concept of violating assignment is based on
Huang et al. (2012) that presented a variant of the
CSP algorithm where the argmax inference problem
is replaced with a violation finding function. Their
update rule, however, is identical to that of the CSP
algorithm. Importantly, although CSP and the above
variant do not exploit the internal structure of the
predicted label, they are special cases of SWVP.

In Section 4 we prove that for a linearly separable
training set, SWVP converges to a linear separator of

the data under certain conditions on the parameters
of the algorithm, that are respected by the CSP spe-
cial case. We further prove mistake and generaliza-
tion bounds for SWVP, and show that in the general
case the SWVP bounds are tighter than the CSP’s.

In Section 5 we show that SWVP allows ag-
gressive updates, that exploit only violating assign-
ments derived from the predicted label, and more
balanced updates, that exploit both violating and
non-violating assignments. In experiments with syn-
thetic data generated by an HMM, we demonstrate
that various SWVP variants substantially outper-
form CSP training. We also provide initial encour-
aging dependency parsing results, indicating the po-
tential of SWVP for real world NLP applications.

2 The Collins Structured Perceptron

In structured prediction the task is to find a mapping
f : X → Y , where y ∈ Y is a structured object
rather than a scalar, and a feature mapping φ(x, y) :
X × Y(x) → Rd is given. In this work we denote
Y(x) = {y′|y′ ∈ DY

Lx}, where Lx, a scalar, is the
size of the allowed output sequence for an input x
andDY is the domain of y′i for every i ∈ {1, . . . Lx}.
1 Our results, however, hold for the general case of
an output space with variable size vectors as well.

The CSP algorithm (Algorithm 1) aims to learn
a parameter (or weight) vector w ∈ Rd, that sepa-
rates the training data, i.e. for each training example
(x, y) it holds that: y = arg maxy′∈Y(x) w ·φ(x, y′).
To find such a vector the algorithm iterates over
the training set examples and solves the above in-
ference (argmax) problem. If the inferred label
y∗ differs from the gold label y the update w =
w + ∆φ(x, y, y∗) is performed. For linearly separa-
ble training data (see definition 4), CSP is proved to
converge to a vector w separating the training data.

Collins and Roark (2004) and Huang et al. (2012)
expanded the CSP algorithm by proposing various
alternatives to the argmax inference problem which
is often intractable in structured prediction problems
(e.g. in high-order graph-based dependency parsing
(McDonald and Pereira, 2006)). The basic idea is re-
placing the argmax problem with the search for a vi-
olation: an output label that the model scores higher

1In the general case Lx is a set of output sizes, which may
be finite or infinite (as in constituency parsing (Collins, 1997)).

Algorithm 1 The Structured Perceptron (CSP)
Input: data D = {xi, yi}ni=1, feature mapping φ
Output: parameter vector w ∈ Rd
Define: ∆φ(x, y, z) , φ(x, y)− φ(x, z)

1: Initialize w = 0.
2: repeat
3: for each (xi, yi) ∈ D do
4: y∗ = arg max

y′∈Y(xi)

w · φ(xi, y′)

5: if y∗ 6= yi then
6: w = w + ∆φ(xi, yi, y∗)
7: end if
8: end for
9: until Convergence

than the gold standard label. The update rule in these
CSP variants is, however, identical to the CSP’s. We,
in contrast, propose a novel update rule that exploits
the internal structure of the model’s prediction re-
gardless of the way this prediction is generated.

3 The Structured Weighted Violations
Perceptron (SWVP)

SWVP exploits the internal structure of a predicted
label y∗ 6= y for a training example (x, y) ∈ D,
by updating the weight vector with respect to sub-
structures of y∗. We start by presenting the funda-
mental concepts at the basis of our algorithm.

3.1 Basic Concepts
Sub-structure Sets We start with two fundamen-
tal definitions: (1) An individual sub-structure of a
structured object (or label) y ∈ DY

Lx , denoted with
J , is defined to be a subset of indexes J ⊆ [Lx];2

and (2) A set of substructures for a training example
(x, y), denoted with JJx, is defined as JJx ⊆ 2[Lx].

Mixed Assignment We next define the concept of
a mixed assignment:
Definition 1. For a training pair (x, y) and a pre-
dicted label y∗ ∈ Y(x), y∗ 6= y, a mixed assign-
ment (MA) vector denoted as mJ(y∗, y) is defined
with respect to J ∈ JJx as follows:

mJ
k (y∗, y) =

{
y∗k k ∈ J
yk else

That is, a mixed assignment is a new label, de-
rived from the predicted label y∗, that is identical to
y∗ in all indexes in J and to y otherwise. For sim-
plicity we denote mJ(y∗, y) = mJ when the refer-
ence y∗ and y labels are clear from the context.

2We use the notation [n] = {1, 2, . . . n}.

Consider, for example, the trees of Figure 1, as-
suming that the top tree is y, the middle tree is y∗

and J = [2, 5].3 In the mJ(y∗, y) (bottom) tree the
heads of all the words are identical to those of the top
tree, except for the heads of mistakes and of then.

Violation The next central concept is that of a vi-
olation, originally presented by Huang et al. (2012):

Definition 2. A triple (x, y, y∗) is said to be a vio-
lation with respect to a training example (x, y) and
a parameter vector w if for y∗ ∈ Y(x) it holds that
y∗ 6= y and w ·∆φ(x, y, y∗) ≤ 0.

The SWVP algorithm distinguishes between
MAs that are violations, and ones that are not. For
a triplet (x, y, y∗) and a set of substructures JJx ⊆
2[Lx] we provide the following notations:

I(y∗, y, JJx)v = {J ∈ JJx|mJ 6= y,w·∆φ(x, y,mJ) ≤ 0}

I(y∗, y, JJx)nv = {J ∈ JJx|mJ 6= y,w·∆φ(x, y,mJ) > 0}

This notation divides the set of substructures into
two subsets, one consisting of the substructures
that yield violating MAs and one consisting of the
substructures that yield non-violating MAs. Here
again when the reference label y∗ and the set
JJx are known we denote: I(y∗, y, JJx)v = Iv,
I(y∗, y, JJx)nv = Inv and I = Iv ∪ Inv.

Weighted Violations The key idea of SWVP is
the exploitation of the internal structure of the pre-
dicted label in the update rule. For this aim at each
iteration we define the set of substructures, JJx, and
then, for each J ∈ JJx, update the parameter vector,
w, with respect to the mixed assignments, MAJ ’s.
This is a more flexible setup compared to CSP, as
we can update with respect to the predicted output
(if it is a violation, as is promised if inference is per-
formed via argmax), if we wish to do so, as well as
with respect to other mixed assignments.

Naturally, not all mixed assignments are equally
important for the update rule. Hence, we weigh the
different updates using a weight vector γ. This pa-
per therefore extends the observation of Huang et al.
(2012) that perceptron parameter update can be per-
formed w.r.t violations (Section 2), by showing that
w can actually be updated w.r.t linear combinations
of mixed assignments, under certain conditions on
the selected weights.

3We index the dependency tree words from 1 onwards.

Some mistakes are worse than others.

Some mistakes are worse than others.

Some mistakes are worse than others.

Figure 1: Example parse trees: gold tree (y, top), predicted tree

(y∗, middle) with arcs differing from the gold’s marked with a

dashed line, and mJ(y∗, y) for J = [2, 5] (bottom tree).

3.2 Algorithm

With these definitions we can present the SWVP al-
gorithm (Algorithm 2). SWVP is in fact a family
of algorithms differing with respect to two decisions
that can be made at each pass over each training ex-
ample (x, y): the choice of the set JJx and the im-
plementation of the SETGAMMA function.

SWVP is very similar to CSP except for in the
update rule. Like in CSP, the algorithm iterates over
the training data examples and for each example it
first predicts a label according to the current param-
eter vector w (inference is discussed in Section 4.2,
property 2). The main difference from CSP is in the
update rule (lines 6-12). Here, for each substructure
in the substructure set, J ∈ JJx, the algorithm gen-
erates a mixed assignment mJ (lines 7-9). Then, w
is updated with a weighted sum of the mixed assign-
ments (line 11), unlike in CSP where the update is
held w.r.t the predicted assignment only.

The γ(mJ) weights assigned to each of the
∆φ(x, y,mJ) updates are defined by a SETGAMMA

function (line 10). Intuitively, a γ(mJ) weight
should be higher the more the mixed assignment
is assumed to convey useful information that can
guide the update of w in the right direction. In Sec-
tion 4 we detail the conditions on SETGAMMA un-
der which SWVP converges, and in Section 5 we
describe various SETGAMMA implementations.

Going back to the example of Figure 1, one would
assume (Sec. 1) that the head word prediction for
worse is pivotal to the substantial difference between
the two top trees (UAS of 0.2). CSP does not directly
exploit this observation as it only updates its param-
eter vector with respect to the differences between
complete assignments: w = w + ∆φ(x, y, z).

In contrast, SWVP can exploit this observation in
various ways. For example, it can generate a mixed

assignment for each of the erroneous arcs where all
other words are assigned their correct arc (according
to the gold tree) except for that specific arc which
is kept as in the bottom tree. Then, higher weights
can be assigned to errors that seem more central than
others. We elaborate on this in the next two sections.

Algorithm 2 The Structured Weighted Violations Perceptron
Input: data D = {xi, yi}ni=1, feature mapping φ
Output: parameter vector w ∈ Rd
Define: ∆φ(x, y, z) , φ(x, y)− φ(x, z)

1: Initialize w = 0.
2: repeat
3: for each (xi, yi) ∈ D do
4: y∗ = arg max

y′∈Y(xi)

w · φ(xi, y′)

5: if y∗ 6= yi then
6: Define: JJxi ⊆ 2[L

xi]

7: for J ∈ JJxi do

8: Define: mJ s.t. mJk =

{
y∗k k ∈ J
yik else

9: end for
10: γ = SETGAMMA()
11: w = w +

∑
J∈Iv∪Inv

γ(mJ)∆φ(xi, yi,mJ)

12: end if
13: end for
14: until Convergence

4 Theory

We start this section with the convergence conditions
on the γ vector which weighs the mixed assignment
updates in the SWVP update rule (line 11). Then,
using these conditions, we describe the relation be-
tween the SWVP and the CSP algorithms. After
that, we prove the convergence of SWVP and anal-
yse the derived properties of the algorithm.

γ Selection Conditions Our main observation in
this section is that SWVP converges under two con-
ditions: (a) the training set D is linearly separable;
and (b) for any parameter vector w achievable by
the algorithm, there exists (x, y) ∈ D with JJx ⊆
2[Lx], such that for the predicted output y∗ 6= y,
SETGAMMA returns a γ weight vector that respects
the γ selection conditions defined as follows:
Definition 3. The γ selection conditions for the
SWVP algorithm are (I = Iv ∪ Inv):

(1)
∑
J∈I

γ(mJ) = 1. γ(mJ) ≥ 0, ∀J ∈ I.

(2) w ·
∑
J∈I

γ(mJ)∆φ(xi, yi,mJ) ≤ 0.

With this definition we are ready to prove the fol-
lowing property.

SWVP Generalizes the CSP Algorithm We now
show that the CSP algorithm is a special case of
SWVP. CSP can be derived from SWVP when tak-
ing: JJx = {[Lx]}, and γ(m[Lx]) = 1 for every
(x, y) ∈ D. With these parameters, the γ selection
conditions hold for every w and y∗. Condition (1)
holds trivially as there is only one γ coefficient and it
is equal to 1. Condition (2) holds as y∗ = m[Lx] and
hence I = {[Lx]} and w ·

∑
J∈I

∆φ(x, y,mJ) ≤ 0.

4.1 Convergence for Linearly Separable Data
Here we give the theorem regarding the convergence
of the SWVP in the separable case. We first define:
Definition 4. A data set D = {xi, yi}ni=1 is linearly
separable with margin δ > 0 if there exists some
vector u with ‖u‖2 = 1 such that for all i:

u ·∆φ(xi, yi, z) ≥ δ,∀z ∈ Y(xi).

Definition 5. The radius of a data set D =
{xi, yi}ni=1 is the minimal scalar R s.t for all i:

‖∆φ(xi, yi, z)‖ ≤ R, ∀z ∈ Y(xi).

We next extend these definitions:

Definition 6. Given a data set D = {xi, yi}ni=1 and
a set JJ = {JJxi ⊆ 2[Lxi]|(xi, yi) ∈ D}, D is
linearly separable w.r.t JJ , with margin δJJ > 0
if there exists a vector u with ‖u‖2 = 1 such
that: u · ∆φ(xi, yi,mJ(z, yi)) ≥ δJJ for all i, z ∈
Y(xi), J ∈ JJxi .
Definition 7. The mixed assignment radius w.r.t JJ
of a data set D = {xi, yi}ni=1 is a constant RJJ s.t
for all i it holds that:

‖∆φ(xi, yi,mJ(z, yi))‖ ≤ RJJ , ∀z ∈ Y(xi), J ∈ JJxi .

With these definitions we can make the following
observation (proof in A):
Observation 1. For linearly separable data D and
a set JJ , every unit vector u that separates the data
with margin δ, also separates the data with respect to
mixed assignments with JJ , with margin δJJ ≥ δ.
Likewise, it holds that RJJ ≤ R.

We can now state our convergence theorem.
While the proof of this theorem resembles that of
the CSP (Collins, 2002), unlike the CSP proof the
SWVP proof relies on the γ selection conditions pre-
sented above and on the Jensen inequality.

Theorem 1. For any dataset D, linearly separable
with respect to JJ with margin δJJ > 0, the SWVP
algorithm terminates after t ≤ (RJJ)2

(δJJ)2 steps, where

RJJ is the mixed assignment radius of D w.r.t. JJ .

Proof. Let wt be the weight vector before the tth
update, thus w1 = 0. Suppose the tth update occurs
on example (x, y), i.e. for the predicted output y∗
it holds that y∗ 6= y. We will bound ‖wt+1‖2 from
both sides.
First, it follows from the update rule of the algorithm
that: wt+1 = wt +

∑
J∈Iv∪Inv

γ(mJ)∆φ(x, y,mJ).

For simplicity, in this proof we will use the notation
Iv ∪ Inv = I . Hence, multiplying each side of the
equation by u yields:

u · wt+1 = u · wt + u ·
∑
J∈I

γ(mJ)∆φ(x, y,mJ)

= u · wt +
∑
J∈I

γ(mJ)u ·∆φ(x, y,mJ)

≥ u · wt +
∑
J∈I

γ(mJ)δJJ (margin property)

≥ u · wt + δJJ ≥ . . . ≥ tδJJ .

The last inequality holds because
∑

J∈I γ(mJ) =

1. From this we get that ‖wt+1‖2 ≥ (δJJ)2t2 since
‖u‖=1. Second,

‖wt+1‖2 = ‖wt +
∑
J∈I

γ(mJ)∆φ(x, y,mJ)‖2

= ‖wt‖2 + ‖
∑
J∈I

γ(mJ)∆Φ(x, y,mJ)‖2

+ 2wt ·
∑
J∈I

γ(mJ)∆Φ(x, y,mJ).

From γ selection condition (2) we get that:

‖wt+1‖2 ≤ ‖wt‖2 + ‖
∑
J∈I

γ(mJ)∆Φ(x, y,mJ)‖2

≤ ‖wt‖2 +
∑
J∈I

γ(mJ)‖∆Φ(x, y,mJ)‖2

≤ ‖wt‖2 + (RJJ)2. (radius property)

The inequality one before the last results from the
Jensen inequality which holds due to (a) γ selection
condition (1); and (b) the squared norm function be-
ing convex. From this we finally get:

‖wt+1‖2 ≤ ‖wt‖2 + (RJJ)2 ≤ . . . ≤ t(RJJ)2.

Combining the two steps we get:
(δJJ)2t2 ≤ ‖wt+1‖2 ≤ t(RJJ)2.

From this it is easy to derive the upper bound in the
theorem: t ≤ (RJJ)2

(δJJ)2
.

4.2 Convergence Properties

We next point on three properties of the SWVP al-
gorithm, derived from its convergence proof:

Property 1 (tighter iterations bound) The con-
vergence proof of CSP (Collins, 2002) is given for
a vector u that linearly separates the data, with mar-
gin δ and for a data radius R. Following observation
1, it holds that in our case, u also linearly separates
the data with respect to mixed assignments with a
set JJ and with margin δJJ ≥ δ. Together with the
definition of RJJ ≤ R we get that: (RJJ)2

(δJJ)2 ≤ R2

δ2 .
This means that the bound on the number of updates
made by SWVP is tighter than the bound of CSP.

Property 2 (inference) From the γ selection con-
ditions it holds that any label from which at least one
violating MA can be derived through JJx is suitable
for an update. This is because in such a case we can
choose, for example, a SETGAMMA function that
assigns the weight of 1 to that MA, and the weight
of 0 to all other MAs.

Algorithm 2 employs the argmax inference func-
tion, following the basic reasoning that it is a good
choice to base the parameter update on. Importantly,
if the inference function is argmax and the algorithm
performs an update (y∗ 6= y), this means that y∗, the
output of the argmax function, is a violating MA by
definition. However, it is obvious that solving the in-
ference problem and the optimal γ assignment prob-
lems jointly may result in more informed parameter
(w) updates. We leave a deeper investigation of this
issue to future research.

Property 3 (dynamic updates) The γ selec-
tion conditions paragraph states two conditions ((a)
and (b)) under which the convergence proof holds.
While it is trivial for SETGAMMA to generate a γ
vector that respects condition (a), if there is a pa-
rameter vector w’ achievable by the algorithm for
which SETGAMMA cannot generate γ that respects
condition (b), SWVP gets stuck when reaching w’.

This problem can be solved with dynamic up-
dates. A deep look into the convergence proof re-
veals that the set JJx and the SETGAMMA func-
tion can actually differ between iterations. While
this will change the bound on the number of it-
erations, it will not change the fact that the algo-
rithm converges if the data is linearly separable.
This makes SWVP highly flexible as it can always

back off to the CSP setup of JJx = {[Lx]}, and
∀(x, y) ∈ D : γ(m[Lx]) = 1, update its parameters
and continue with its original JJ and SETGAMMA

when this option becomes feasible. If this does not
happen, the algorithm can continue till convergence
with the CSP setup.

4.3 Mistake and Generalization Bounds

The following bounds are proved: the number of
updates in the separable case (see Theorem 1); the
number of mistakes in the non-separable case (see
Appendix B); and the probability to misclassify an
unseen example (see supplementary material). It can
be shown that in the general case these bounds are
tighter than those of the CSP special case. We next
discuss variants of SWVP.

5 Passive Aggressive SWVP

Here we present types of update rules that can be
implemented within SWVP. Such rule types are de-
fined by: (a) the selection of γ, which should respect
the γ selection conditions (see Definition 3) and (b)
the selection of JJ = {JJx ⊆ 2[Lx]|(x, y) ∈ D},
the substructure sets for the training examples.

γ Selection A first approach we consider is the ag-
gressive approach4 where only mixed assignments
that are violations {mJ : J ∈ Iv} are exploited
(i.e. for all J ∈ Inv, γ(mJ) = 0). Note, that in
this case condition (2) of the γ selection conditions
trivially holds as: w ·

∑
J∈Iv

γ(mJ)∆φ(x, y,mJ) ≤ 0.

The only remaining requirement is that condition (1)
also holds, i.e. that

∑
J∈Iv γ(mJ) = 1.

The opposite, passive approach, exploits only
non-violating MA’s {mJ : J ∈ Inv}. How-
ever, such γ assignments do not respect γ
selection condition (2), as they yield: w ·∑

J∈Inv γ(mJ)∆φ(x, y,mJ) ≤ 0 which holds if
and only if for every J ∈ Inv, γ(mJ) = 0 that in
turn contradicts condition (1).

Finally, we can take a balanced approach which
gives a positive γ coefficient for at least one violat-
ing MA and at least one positive γ coefficient for
a non-violating MA. This approach is allowed by
SWVP as long as both γ selection conditions hold.

4We borrow the term passive-aggressive from (Crammer et
al., 2006), despite the substantial difference between the works.

We implemented two weighting methods, both
based on the concept of margin:
(1) Weighted Margin (WM): γ(mJ) =
|w·∆φ(x,y,mJ)|β∑

J′∈JJx
|w·∆φ(x,y,mJ′)|β

(2) Weighted Margin Rank (WMR):

γ(mJ) =
(
|JJx|−r
|JJx|

)β
. where r is the

rank of |w · ∆φ(x, y,mJ(y∗, y))| among the
|w ·∆φ(x, y,mJ ′(y∗, y))| values for J ′ ∈ JJx.

Both schemes were implemented twice, within a
balanced approach (denoted as B) and an aggressive
approach (denoted as A).5 The aggressive schemes
respect both γ selection conditions. The balanced
schemes, however, respect the first condition but not
necessarily the second. Since all models that employ
the balanced weighting schemes converged after at
most 10 iterations, we did not impose this condition
(which we could do by, e.g., excluding terms for J ∈
Inv till condition (2) holds).

JJ Selection Another choice that strongly affects
the updates made by SWVP is that of JJ . A choice
of JJx = 2[Lx], for every (x, y) ∈ D results in an
update rule which considers all possible mixing as-
signments derived from the predicted label y∗ and
the gold label y. Such an update rule, however, re-
quires computing a sum over an exponential number
of terms (2Lx) and is therefore highly inefficient.

Among the wide range of alternative approaches,
in this paper we exploit single difference mixed as-
signments. In this approach we define: JJ =
{JJx = {{1}, {2}, . . . {Lx}}|(x, y) ∈ D}. For a
training pair (x, y) ∈ D, a predicted label y∗ and
J = {j} ∈ JJx, we will have:

mJ
k (y∗, y) =

{
yk k 6= j

y∗k k = j

Under this approach for the pair (x, y) ∈ D only
Lx terms are summed in the SWVP update rule.
We leave a further investigation of JJ selection ap-
proaches to future research.

6 Experiments

Synthetic Data We experiment with syn-
thetic data generated by a linear-chain, first-

5For the aggressive approach the equations for schemes
(1) and (2) are changed such that JJx is replaced with
I(y∗, y, JJx)v .

order Hidden Markov Model (HMM, (Ra-
biner and Juang, 1986)). Our learning al-
gorithm is a liner-chain conditional random
field (CRF, (Lafferty et al., 2001)): P (y|x) =

1
Z(x)

∏
i=1:Lx

exp(w · φ(yi−1, yi, x)) (where Z(x)
is a normalization factor) with binary indicator fea-
tures {xi, yi, yi−1, (xi, yi), (yi, yi−1), (xi, yi, yi−1)}
for the triplet (yi, yi−1, x).

A dataset is generated by iteratively sampling K
items, each is sampled as follows. We first sam-
ple a hidden state, y1, from a uniform prior distri-
bution. Then, iteratively, for i = 1, 2, . . . , Lx we
sample an observed state from the emission prob-
ability and (for i < Lx) a hidden state from the
transition probability. We experimented in 3 setups.
In each setup we generated 10 datasets that were
subsequently divided to a 7000 items training set,
a 2000 items development set and a 1000 items test
set. In all datasets, for each item, we set Lx = 8.
We experiment in three conditions: (1) simple(++),
learnable(+++), (2) simple(++), learnable(++) and
(3) simple(+), learnable(+).6

For each dataset (3 setups, 10 datasets per setup)
we train variants of the SWVP algorithm differing in
the γ selection strategy (WM or WMR, Section 5),
being aggressive (A) or passive (B), and in their β
parameter (β = {0.5, 1, . . . , 5}). Training is done
on the training subset and the best performing vari-
ant on the development subset is applied to the test
subset. For CSP no development set is employed
as there is no hyper-parameter to tune. We report
averaged accuracy (fraction of observed states for
which the model successfully predicts the hidden
state value) across the test sets, together with the
standard deviation.

Dependency Parsing We also report initial de-
pendency parsing results. We implemented our algo-
rithms within the TurboParser (Martins et al., 2013).

6Denoting Dx = [Cx], Dy = [Cy], and a permuta-
tion of a vector v with perm(v), the parameters of the dif-
ferent setups are: (1) simple(++), learnable(+++): Cx =
5, Cy = 3, P (y′|y) = perm(0.7, 0.2, 0.1), P (x|y) =
perm(0.75, 0.1, 0.05, 0.05, 0.05). (2) simple(++), learn-
able(++): Cx = 5, Cy = 3, P (y′|y) = perm(0.5, 0.3, 0.2),
P (x|y) = perm(0.6, 0.15, 0.1, 0.1, 0.05). (3) sim-
ple(+), learnable(+): Cx = 20 , Cy = 7 ,
P (y′|y) = perm(0.7, 0.2, 0.1, 0, . . . , 0)), P (x|y) =
perm(0.4, 0.2, 0.1, 0.1, 0.1, 0, . . . , 0).

That is, every other aspect of the parser: feature
set, probabilistic pruning algorithm, inference algo-
rithm etc., is kept fixed but training is performed
with SWVP. We compare our results to the parser
performance with CSP training (which comes with
the standard implementation of the parser).

We experiment with the datasets of the CoNLL
2007 shared task on multilingual dependency pars-
ing (Nilsson et al., 2007), for a total of 9 languages.
We followed the standard train/test split of these
dataset. For SWVP, we randomly sampled 1000 sen-
tences from each training set to serve as develop-
ment sets and tuned the parameters as in the syn-
thetic data experiments. CSP is trained on the train-
ing set and applied to the test set without any devel-
opment set involved. We report the Unlabeled At-
tachment Score (UAS) for each language and model.

7 Results

Synthetic Data Table 1 presents our results. In all
three setups an SWVP algorithm is superior. Av-
eraged accuracy differences between the best per-
forming algorithms and CSP are: 3.72 (B-WMR,
(simple(++), learnable(+++))), 5.29 (B-WM, (sim-
ple(++), learnable(++))) and 5.18 (A-WM, (sim-
ple(+), learnable(+))). In all setups SWVP outper-
forms CSP in terms of averaged performance (ex-
cept from B-WMR for (simple(+), learnable(+))).
Moreover, the weighted models are more stable than
CSP, as indicated by the lower standard deviation
of their accuracy scores. Finally, for the more sim-
ple and learnable datasets the SWVP models outper-
form CSP in the majority of cases (7-10/10).

We measure generalization from development to
test data in two ways. First, for each SWVP algo-
rithm we count the number of times its β parame-
ter results in an algorithm that outperforms the CSP
on the development set but not on the test set (not
shown in the table). Of the 120 comparisons re-
ported in the table (4 SWVP models, 3 setups, 10
comparisons per model/setup combination) this hap-
pened once (A-MV, (simple(++), learnable(+++)).

Second, we count the number of times the best de-
velopment set value of the β hyper-parameter is also
the best value on the test set, or the test set accu-
racy with the best development set β is at most 0.5%
lower than that with the best test set β. The Gener-

simple(++), learnable(+++) simple(++), learnable(++) simple(+), learnable(+)
Model Acc. (std) # Wins Gener. Acc. (std) # Wins Gener. Acc. (std) # Wins Gener.
B-WM 75.47(3.05) 9/10 10/10 63.18 (1.32) 9/10 10/10 28.48 (1.9) 5/10 10/10

B-WMR 75.96 (2.42) 8/10 10/10 63.02 (2.49) 9/10 10/10 24.31 (5.2) 4/10 10/10

A-WM 74.18 (2.16) 7/10 10/10 61.65 (2.30) 9/10 10/10 30.45 (1.0) 6/10 10/10
A-WMR 75.17 (3.07) 7/10 10/10 61.02 (1.93) 8/10 10/10 25.8 (3.18) 2/10 10/10

CSP 72.24 (3.45) NA NA 57.89 (2.85) NA NA 25.27(8.55) NA NA

Table 1: Overall Synthetic Data Results. A- and B- denote an aggressive and a balanced approaches, respectively. Acc. (std) is

the average and the standard deviation of the accuracy across 10 test sets. # Wins is the number of test sets on which the SWVP

algorithm outperforms CSP. Gener. is the number of times the best β hyper-parameter value on the development set is also the best

value on the test set, or the test set accuracy with the best development set β is at most 0.5% lower than that with the best test set β.

First Order Second Order
Language CSP B-WM Top B-WM Test B-WM CSP B-WM Top B-WM Test B-WM
English 86.34 86.4 86.7 86.7 88.02 87.82 87.82 87.92
Chinese 84.60 84.5 85.04 85.05 86.82 86.69 86.83 87.02
Arabic 79.09 79.17 79.21 79.21 76.07 75.94 76.09 76.09
Greek 80.41 80.20 80.28 80.28 80.31 80.40 80.40 80.61
Italian 84.63 84.64 84.74 84.70 84.03 84.08 84.15 84.28

Turkish 83.05 82.89 82.89 82.89 83.02 83.04 83.04 83.31
Basque 79.47 79.54 79.54 79.54 80.52 80.57 80.63 80.64
Catalan 88.51 88.46 88.50 88.5 88.71 88.81 88.81 88.82

Hungarian 80.17 80.07 80.07 80.21 80.61 80.45 80.45 80.55

Average 83.69 83.65 83.77 83.79 83.12 83.08 83.13 83.35

Table 2: First and second order dependency parsing UAS results for CSP trained models, as well as for models trained with SWVP

with a balanced γ selection (B) and with a weighted margin (WM) strategy. For explanation of the B-WM, Top B-WM, and Test

B-WM see text. For each language and parsing order we highlight the best result in bold font, but this do not include results from

Test B-WM as it is provided only as an upper bound on the performance of SWVP.

alization column of the table shows that this has not
happened in all of the 120 runs of SWVP.

Dependency Parsing Results are given in Table
2. For the SWVP trained models we report three
numbers: (a) B-WM is the standard setup where the
β hyper parameter is tuned on the development data;
(b) For Top B-WM we first selected the models with
a UAS score within 0.1% of the best development
data result, and of these we report the UAS of the
model that performs best on the test set; and (c) Test
B-WM reports results when β is tuned on the test set.
This measure provides an upper bound on SWVP
with our simplistic JJ (Section 5).

Our results indicate the potential of SWVP. De-
spite our simple JJ set, Top B-WM and Test B-WM
improve over CSP in 5/9 and 6/9 cases in first order
parsing, respectively, and in 7/9 cases in second or-
der parsing. In the latter case, Test B-WM improves
the UAS over CSP in 0.22% on average across lan-
guages. Unfortunately, SWVP still does not gener-
alize well from train to test data as indicated, e.g., by
the modest improvements B-WM achieves over CSP
in only 5 of 9 languages in second order parsing.

8 Conclusions

We presented the Structured Weighted Violations
Perceptron (SWVP) algorithm, a generalization of
the Structured Perceptron (CSP) algorithm that ex-
plicitly exploits the internal structure of the pre-
dicted label in its update rule. We proved the conver-
gence of the algorithm for linearly separable training
sets under certain conditions on its parameters, and
provided generalization and mistake bounds.

In experiments we explored only very simple con-
figurations of the SWVP parameters - γ and JJ .
Nevertheless, several of our SWVP variants out-
performed the CSP special case in synthetic data
experiments. In dependency parsing experiments,
SWVP demonstrated some improvements over CSP,
but these do not generalize well. While we find these
results somewhat encouraging, they emphasize the
need to explore the much more flexible γ and JJ
selection strategies allowed by SWVP (Sec. 4.2). In
future work we will hence develop γ and JJ selec-
tion algorithms, where selection is ideally performed
jointly with inference (property 2, Sec. 4.2), to make
SWVP practically useful in NLP applications.

A Proof Observation 1.

Proof. For every training example (x, y) ∈ D, it
holds that: ∪z∈Y(x)m

J(z, y) ⊆ Y(x). As u sepa-
rates the data with margin δ, it holds that:

u ·∆φ(x, y,mJ(z, y)) ≥ δJJx , ∀z ∈ Y(x), J ∈ JJx.
u ·∆φ(x, y, z) ≥ δ, ∀z ∈ Y(x).

Therefore also δJJx ≥ δ. As the last inequal-
ity holds for every (x, y) ∈ D we get that δJJ =
min(x,y)∈D δ

JJx ≥ δ.
From the same considerations it holds that RJJ ≤
R. This is because RJJ is the radius of a sub-
set of the dataset with radius R (proper subset if
∃(x, y) ∈ D, [Lx] /∈ JJx, non-proper subset oth-
erwise).

B Mistake Bound - Non Separable Case

Here we provide a mistake bound for the algorithm
in the non-separable case. We start with the follow-
ing definition and observation:

Definition 8. Given an example (xi, yi) ∈ D, for a
u, δ pair define:

ri = u · φ(xi, yi)− max
z∈Y(xi)

u · φ(xi, z)

εi = max{0, δ − ri}

ri
JJ

= u · φ(xi, yi)−
max

z∈Y(xi),J∈JJxi
u · φ(xi,mJ(z, yi))

Finally define: Du,δ =

√
n∑
i=1

ε2i

Observation 2. For all i: ri ≤ riJJ .
Observation 2 easily follows from Definition 8.
Following this observation we denote: rdiff =

mini{ri
JJ − ri} ≥ 0 and present the next theorem:

Theorem 2. For any training sequence D, for the
first pass over the training set of the CSP and the
SWVP algorithms respectively, it holds that:

#mistakes− CSP ≤ min
u:‖u‖=1,δ>0

(R+Du,δ)
2

δ2
.

#mistakes− SWV P ≤ min
u:‖u‖=1,δ>0

(RJJ +Du,δ)
2

(δ + rdiff)2
.

As RJJ ≤ R (Observation 1) and rdiff ≥ 0,
we get a tighter bound for SWVP. The proof for
#mistakes-CSP is given at (Collins, 2002). The
proof for #mistakes-SWVP is given below.

Proof. We transform the representation φ(x, y) ∈
Rd into a new representation ψ(x, y) ∈ Rd+n as fol-
lows: for i = 1, ..., d : ψi(x, y) = φi(x, y), for
j = 1, ..., n : ψd+j(x, y) = ∆ if (x, y) = (xj , yj)
and 0 otherwise, where ∆ > 0 is a parameter.
Given a u, δ pair define v ∈ Rd+n as follows: for
i = 1, ..., d : vi = ui, for j = 1, ..., n : vd+j =

εj
∆ .

Under these definitions we have:

v · ψ(xi, yi)− v · ψ(xi, z) ≥ δ, ∀i, z ∈ Y(xi).

For every i, z ∈ Y(xi), J ∈ JJxi :

v · ψ(xi, yi)− v · ψ(xi,mJ(z, yi)) ≥ δ + rdiff .

‖ψ(xi, yi)− ψ(xi,mJ(z, yi))‖2 ≤ (RJJ)2 + ∆2.

Last, we have,

‖v‖2 = ‖u‖2 +
n∑
i=1

ε2i
∆2

= 1 +
D2

u,δ

∆2
.

We get that the vector v
‖v‖ linearly separates the

data with respect to single decision assignments with
margin δ√

1+
D2
U,δ

∆2

. Likewise, v
‖v‖ linearly separates

the data with respect to mixed assignments with JJ ,
with margin δ+rdiff√

1+
Du,δ
∆2

. Notice that the first pass

of SWVP with representation Ψ is identical to the
first pass with representation Φ because the param-
eter weight for the additional features affects only a
single example of the training data and do not affect
the classification of test examples. By theorem 1 this
means that the first pass of SWVP with representa-

tion Ψ makes at most ((RJJ)2+∆2)
(δ+rdiff)2 ·

(
1 +

D2
u,δ

∆2

)
.

We minimize this w.r.t ∆, which gives: ∆ =√
RJJDu,δ, and obtain the result guaranteed in the

theorem.

Acknowledgments

The second author was partly supported by a re-
search grant from the GIF Young Scientists’ Pro-
gram (No. I-2388-407.6/2015): Syntactic Parsing
in Context.

References
Michael Collins and Brian Roark. 2004. Incremental

parsing with the perceptron algorithm. In Proc. of
ACL.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proc. of ACL, pages
16–23.

Michael Collins. 2002. Discriminative training methods
for hidden markov models: Theory and experiments
with perceptron algorithms. In Proc. of EMNLP, pages
1–8.

Koby Crammer and Yoram Singer. 2003. Ultraconser-
vative online algorithms for multiclass problems. The
Journal of Machine Learning Research, 3:951–991.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. The Journal of Machine Learn-
ing Research, 7:551–585.

Hal Daumé III and Daniel Marcu. 2005. Learning as
search optimization: Approximate large margin meth-
ods for structured prediction. In Proc. of ICML, pages
169–176.

Yoav Freund and Robert E Schapire. 1999. Large margin
classification using the perceptron algorithm. Machine
learning, 37(3):277–296.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proc. of NAACL-HLT 2010, pages
742–750.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proc. of ACL.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proc.
of NAACL-HLT, pages 142–151.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proc. of ACL, pages 1–
11.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proc. of ICML.

André FT Martins, Miguel Almeida, and Noah A Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Prc. of ACL short papers,
pages 617–622.

Ryan T McDonald and Fernando CN Pereira. 2006. On-
line learning of approximate dependency parsing algo-
rithms. In Proc. of EACL.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In Proc. of ACL, pages 91–98.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency parsing
using spanning tree algorithms. In Proc. of EMNLP-
HLT, pages 523–530.

Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir
Globerson. 2010. Learning efficiently with approxi-
mate inference via dual losses. In Proc. of ICML.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The conll 2007 shared task on dependency parsing.
In Proceedings of the CoNLL shared task session of
EMNLP-CoNLL, pages 915–932. sn.

Lawrence Rabiner and Biing-Hwang Juang. 1986. An
introduction to hidden markov models. ASSP Maga-
zine, IEEE, 3(1):4–16.

Roi Reichart and Regina Barzilay. 2012. Multi event
extraction guided by global constraints. In Proc. of
NAACL-HLT 2012, pages 70–79.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin markov networks. In Proc. of NIPS.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output vari-
ables. In Journal of Machine Learning Research,
pages 1453–1484.

Luke S Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to logical
form. In Proc. of EMNLP-CoNLL, pages 678–687.

Yue Zhang and Stephen Clark. 2008. Joint word seg-
mentation and pos tagging using a single perceptron.
In proc. of ACL, pages 888–896.

