
Perturbation Based Learning for Structured NLP Tasks with Application
to Dependency Parsing

Amichay Doitch ∗ Ram Yazdi ∗
Faculty of Industrial Engineering and Management, Technion, IIT

{amichayd@campus|sram@campus|tamir.hazan|roiri}.technion.ac.il

Tamir Hazan Roi Reichart

Abstract

The best solution of structured prediction
models in NLP is often inaccurate due to
limited expressive power of the model or to
non-exact parameter estimation. One way
to mitigate this problem is sampling can-
didate solutions from the model’s solution
space, reasoning that effective exploration
of this space should yield high quality solu-
tions. Unfortunately, sampling is often com-
putationally hard and many works hence
back-off to sub-optimal strategies such as
extraction of the best scoring solutions of
the model, which are not as diverse as sam-
pled solutions. In this paper we propose
a perturbation-based approach where sam-
pling from a probabilistic model is com-
putationally efficient. We present a learn-
ing algorithm for the variance of the per-
turbations, and empirically demonstrate its
importance. Moreover, while finding the
argmax in our model is intractable, we pro-
pose an efficient and effective approxima-
tion. We apply our framework to cross-
lingual dependency parsing across 72 cor-
pora from 42 languages and to lightly super-
vised dependency parsing across 13 corpora
from 12 languages, and demonstrate strong
results in terms of both the quality of the en-
tire solution list and of the final solution.1

1 Introduction

Structured prediction problems are ubiquitous
in Natural Language Processing (NLP) (Smith,
2011). While in most cases models for such prob-
lems are designed to predict the highest quality
structure of the input example (e.g. a sentence or
a document), in many cases a diverse list of mean-
ingful structures is of fundamental importance.

∗* Both authors equally contributed to this work.
1Our code is at: https://github.com/

ramyazdi/perturbations

This can stem from several reasons. First, it can
be a defining property of the task. For example,
in extractive summarization (Nenkova and McK-
eown, 2011) good summaries are those that con-
sist of a high quality and diverse list of sentences
extracted from the text. In other cases the mem-
bers of the solution list are exploited when solv-
ing an end goal application. For example, depen-
dency forests were used in order to improve ma-
chine translation (Tu et al., 2010; Ma et al., 2018)
and sentiment analysis (Tu et al., 2012).

In yet other cases it is a first step towards learn-
ing a high quality structure, that cannot be learned
by the model through standard argmax inference.
For example, in the well-studied reranking setup
(Collins, 2002; Collins and Koo, 2005; Charniak
and Johnson, 2005; Son et al., 2012; Kalchbren-
ner and Blunsom, 2013), a K-best list of solutions
is first extracted from a baseline learner, that typi-
cally has a limited feature space, and is then trans-
ferred to another feature-rich model that chooses
the best solution from this list. Other examples
include bagging (Breiman, 1996; Sun and Wan,
2013) and boosting (Bawden and Crabbé, 2016)
as well as other ensemble methods (Surdeanu and
Manning, 2010; Täckström et al., 2013; Kuncoro
et al., 2016) that are often applied when the data
available for model training is limited, in cases
where exact argmax inference in the model is in-
defeasible or when training is not deterministic.
In such cases, an ensemble of approximated solu-
tions is fed into another model that extracts a final
high quality solution.

Unfortunately, both alternatives suffer from in-
herent limitations. K-best lists can be extracted
by extensions of the argmax inference algorithm
for many models: the K-best Viterbi algorithm
(Golod, 2009) for Hidden Markov Models (Ra-
biner, 1989) and Conditional Random Fields (Laf-
ferty et al., 2001), K-best Maximum Spanning
Tree (MST) algorithms for graph-based depen-

 https://github.com/ramyazdi/perturbations
 https://github.com/ramyazdi/perturbations

dency parsing (Camerini et al., 1980; Hall, 2007)
etc. However, the members of K-best lists are typ-
ically quite similar to each other and do not sub-
stantially deviate from the argmax solution of the
model.2 Ensemble techniques, in contrast, are of-
ten designed to encourage diversity of the K-list
members, but they require the training of multiple
models (often one model per solution in the K-list)
which is prohibitive for large K values.

In this work we propose a new method for learn-
ing K-lists from machine learning models, fo-
cusing on structured prediction models in NLP.
Our method is based on the MAP-perturbations
model (Hazan et al., 2016). A particularly ap-
pealing property of the perturbations framework
is that it supports computationally tractable sam-
pling from the perturbated model, although this
comes at the cost of the argmax operation often be-
ing intractable . This property allows us to sample
high quality and diverse K-lists of solutions, while
training only the base (non-perturbated) learner
and a smooth noise function. We propose a novel
algorithm that automatically learns the noise pa-
rameter of the perturbation model and show the
efficacy of this approach in generating high qual-
ity K-lists (§ 2). To overcome the intractability of
the argmax operation we employ an approxima-
tion and experimentally demonstrate its efficacy.

Particularly, we introduce a Gibbs-perturbation
model: a model that augments a given machine
learning model with an additive or multiplica-
tive Gaussian noise function (Keshet et al., 2011;
Hazan et al., 2013). In order to approximate the
argmax of the perturbated model we employ a max
over marginals (MOM) procedure over the K-list
members. We learn the variance of the Gaussian
noise function such that the final solution distilled
from the K-list is as close to the gold standard so-
lution as possible. To the best of our knowledge,
the final solution distillation method and the vari-
ance learning algorithm are novel in the context of
perturbation-based learning.

To evaluate our framework, we consider two de-
pendency parsing setups: cross-language transfer
and lightly supervised training. We focus on these
tasks because they are prominent NLP challenges
where the model (the non-perturbated dependency

2Many machine translation (MT) works aimed to generate
diverse K-lists of translated sentences (e.g. (Macherey et al.,
2008; Gimpel et al., 2013; Li and Jurafsky, 2016)). However,
these methods are specific to MT, while we focus on a general
framework for structured prediction in NLP.

parser) is a good fit to the task and data, as indi-
cated by the high quality trees generated in mono-
lingual setups with abundance of in-domain train-
ing data, but the training setup makes parameter
estimation challenging. Hence, the argmax solu-
tion of the model is often not the highest quality
one. In such cases it is likely that a diverse list of
high quality solutions will be valuable.

Particularly, we experiment with the Univer-
sal Dependencies (UD) Treebanks (Nivre et al.,
2016; McDonald et al., 2013). For cross-language
parser transfer we consider 72 corpora from 42
languages. We train a perturbated delexical-
ized parser for each target language. The non-
perturbated parser is first trained on data from
all languages except from the target language and
then we learn the variance of the noise distribution
on additional data from those languages. Finally,
we employ the trained perturbated parser K times
to the target language test set, perturbating the pa-
rameters of the base parser using noise sampled
from the trained noise distribution. The final so-
lution is extracted from this K-list by the MOM
algorithm. The experiments in the lightly super-
vised setup are similar, except that we consider 13
UD corpora (written in 12 languages) which have
limited training data. This setup is mono-lingual,
we train and test on data from the same corpus.

Our results demonstrate the quality of the K-
lists generated by our algorithm and of the tree
returned by the MOM procedure. We compare
our lists and final solution to those of a vari-
ety of alternative algorithms for K-list genera-
tion, including the K-best variant of the parser’s
argmax inference algorithm, and demonstrate sub-
stantial gains. Finally, even though we integrate
our method into a linear parser (Huang and Sagae,
2010), our modified parser outperforms a state-of-
the-art (non-perturbated) BiLSTM parser (Kiper-
wasser and Goldberg, 2016) on our tasks.

2 K-lists in NLP

Structured models in NLP Many NLP tasks,
particularly tagging and parsing, involve the in-
ference of a high-dimensional discrete structure
y = (y1, ..., ym). For example, in part-of-speech
(POS) tagging of an n-word input sentence, each
yi variable corresponds to an input word (and
hence m = n), and is assigned a value in
{1, . . . , P} where P is the number of POS tags.
In dependency parsing, a graph G = (V,E) is de-

fined over an n-word input sentence such that each
vertex corresponds to a word in the input sentence
(|V | = n) and each arc corresponds to an ordered
word pair (|E| = m = n2). In the structured
model, each ordered pair of words in the input
sentence is assigned a variable yi, and the result-
ing parse tree is a vector (y1, ..., ym) ∈ {0, 1}m
that forms a spanning tree in the graph G. For ev-
ery spanning tree ye = 1 if the arc e ∈ E is in
the spanning tree and ye = 0 otherwise. In what
follows, we proceed with the dependency parsing
notation although our ideas are equally relevant to
any task defined over discrete structures.3

The common practice in structured prediction is
that structures are scored by a function that assigns
favorable structures with high scores and unfavor-
able ones with low scores. The number of struc-
tures (|T |) is often exponential inm, as in our run-
ning dependency parsing example. Hence, in or-
der to avoid exponential complexity, the scoring
function has to factorize. In our running example
this is done through:

θ(y1, ..., ym) =
∑
e∈E

θeye (1)

The standard approach is to train the model (es-
timate the θ parameters of the scoring function)
so that the highest scoring configuration (namely
y∗ = argmaxy∈T θ(y)) is as similar as possible
to the human generated ("gold") structure. For de-
pendency parsing, this is equivalent to finding the
maximal spanning tree of the graph G.

Prediction with K-lists Unfortunately, often-
times the highest scoring structure is not the best
one. This may happen in cases the model is not
expressive enough, e.g. in first-order dependency
parsing where onlym local potentials (θe) are used
to score exponentially many structures. This may
also happen in cases where the values of the poten-
tial functions are inaccurate, as learning inherently
has both statistical and variational errors.

A popular solution to this problem is exploiting
the power of lists of structures. In the first stage
of this framework, the list members are extracted
and in the second stage, the final solution is ex-
tracted from this list - either by selecting one list
member, or by distilling a new solution based on
the statistics of the list members.

3To be more precise, our notation is that of the graph-
based first-order dependency parsing problem, where weights
are defined over individual candidate dependency arcs.

Ideally, such a list should be high quality and
diverse, in order to explore candidate structures
that add information over the structure returned by
the argmax inference problem. Yet, the prominent
approach in past research constructs a list of the
K best solutions according to the scoring function
(Equation 1). On the positive side, this approach is
computationally feasible as the argmax inference
algorithms of prominent structured NLP models
can be efficiently extended to find the top scoring
K structures (§ 1). However, in practice the top
scoring K structures are similar to the top scoring
structure (see our analysis in § 6), and important
parts of the solution space remain unexplored.4

This calls for another approach that explores
more diverse parts of the solution space. The ap-
proach we take here is based on sampling from
probabilistic models.

Sampling-based K-lists Sampling is a possi-
ble solution to the diversity problem. In prac-
tice, many sampling algorithms require that the
structured model will be defined as a probabilistic
model. It is natural to impose a probabilistic inter-
pretation of the model described in Equation 1. To
do that, a posterior distribution over all structures
(a.k.a the Gibbs distribution) is realized from the
scoring function:

pθ(y1, ..., ym) ∝ exp
(∑
e∈E

θeye
)

(2)

The highest scoring structure under this proba-
bilistic model is called the maximum a-posteriori
(MAP) assignment, and is identical to the top scor-
ing function from Equation 1:

y∗1, ..., y
∗
m = arg max

y1,...,ym∈T
pθ(y1, ..., ym)(3)

= arg max
y1,...,ym∈T

∑
e∈E

θeye

Likewise, the top K-list of this model – consist-
ing of the K most probable structures of the Gibbs
distribution – is also identical to that of the unnor-
malized model. As noted above, these structures
are likely to be of high quality but also quite simi-
lar to each other.

The natural alternative that probabilistic models
make possible is to sample from the Gibbs distri-
bution instead. Such a strategy is likely to detect

4As noted in § 1, the other prominent approach, based on
ensemble methods, is computationally demanding for highK
value, as K different models have to be trained. In the rest of
the paper we hence do not focus on this approach.

high quality structures even if they are not very
similar to the best scoring solution, particularly
in cases where the estimated model parameters do
not fit well the test data. A final tree distilled from
such a candidate list is more likely to be of higher
quality than the list distilled from the list of the top
scoring K structures, due to the better representa-
tion of the solution space.

Unfortunately, this approach comes with a
caveat: sampling a structure from the Gibbs dis-
tribution is often slower than finding the MAP
assignment (Goldberg and Jerrum, 2007; Sontag
et al., 2008). In our running example, the sam-
pling of first order graph-based dependency pars-
ing depends on the mean hitting time of a random
walk in a graph (Wilson, 1996; Zhang et al., 2014),
which is slower than finding the maximum span-
ning tree of the same graph.

Perturbation-based K-lists Perturbation mod-
els define probability distributions over high-
dimensional discrete structures for which sam-
pling is as fast as solving the MAP problem
of a base, non-perturbated, model (Papandreou
and Yuille, 2011; Tarlow et al., 2012; Hazan and
Jaakkola, 2012; Maddison et al., 2014). In our set-
ting, perturbation models let us sample a spanning
tree as fast as finding a highest scoring spanning
tree of a base parser. In this setting, we can draw
samples from the perturbated model by perturb-
ing the potential functions of the base model and
solving the resulting MAP problem. The MAP-
perturbation approach samples random variables
γ1, ..., γm from a posterior distribution around the
base model weights θ1, ..., θm and solves the ran-
domly perturbed argmax problem:5

yγ = argmax
y∈T

{∑
e∈E

γeye

}
(4)

The posterior distribution around the model
weights qθ(γ) is defined such that it is centered
around the model weights θ, namely, Eγ∼qθ [γ] =
θ. For example, qθ(γ) can be a Gaussian probabil-
ity density function:

qθ(γ) =
∏
e

1√
2π
e

(γe−θe)2
2 .

5In practice, feature-based models are a bit more com-
plicated. For example, linear models typically define θe =
W · fe and then the number of random noise variables in the
MAP-perturbation approach is |W |. For simplicity of pre-
sentation we describe here a model with one parameter per
candidate edge (θe) and m noise variables.

For now we assume that the variance of the pos-
terior qθ(γ) is 1 and defer its learning to § 3. Per-
turbation models measure the probability a struc-
ture is of maximal score, when considering all per-
turbations:

pγ(y1, ..., ym) = Pγ∼qθ [y
γ = y] (5)

A particular appealing property of Gibbs mod-
els is that in many cases the most likely structure
can be computed or approximated efficiently us-
ing dynamic programming or efficient optimiza-
tion techniques (Koller et al., 2009; Wainwright
and Jordan, 2008). For example, finding the most
likely dependency parse can be done by finding
the maximum spanning tree of a graph (McDon-
ald et al., 2005). In this work we want to enjoy
the best of both worlds, exploiting the capability
of MAP-perturbation models to sample by solving
the MAP problem of the base model, while build-
ing on the efficient MAP approximation in Gibbs
models. We do that by composing a perturbation
model on top of a Gibbs model. This construction
allows us to effectively sample high quality and di-
verse K-lists from MAP-perturbation models, and
distill a high quality final structure.

3 Effective Sampling and Learning with
MAP-Perturbation Models

A major practical issue when implementing per-
turbation models is the magnitude of the pertur-
bation variables γ, or their variance. It is easy
to see that the variance of these variables greatly
influences the quality of the resulting probability
model. If this variance is too high, the perturba-
tion noise can easily shadow the signal learned
from data , i.e.

∑
e γeye �

∑
e θeye with non-

negligible probability, so the max-perturbation
value becomes meaningless. Therefore, in this
work we learn the variance of the perturbation pos-
terior. For example, for a Gaussian noise γ ∼
N(0, σ2e) added to the Gibbs model parameters
θ = [θ1, . . . , θm], the variance is introduced as

(additive) qθ,σ(γ) =
∏
e

1√
2πσe

e
(γe−θe)2

2σ2e . (6)

Our model is more flexible, and allows other types
of noise. For example, we can assume a Gaussian
multiplicative noise γ ∼ N(1, σ2e) to get

(multiplicative) qθ,σ(γ) =
∏
e

1√
2πσe

e
(γe−θe)2

2θ2eσ
2
e . (7)

We divide this section to two. We first discuss
our approach to variance learning in perturbation
models. Then, we detail our recipe for learning
with perturbation-based K-lists, so that each test
example is eventually assigned a single structure.

Learning the variance of the perturbation dis-
tribution Given a training set S = {(xi, yi)}Ni=1

consisting of examples (xi) and the structures with
which they are labeled (yi), we learn the vari-
ance with respect to the oracle loss oracleK().
This loss penalizes the perturbation parameters
(γ1, . . . , γm) according to the difference between
the final structure extracted from the K-list of each
example xi and the gold tree of that example, yi.
In our running example, dependency parsing, it is
straight forward to define this loss as:

oracleK({γj}Kj=1, xi, yi) = (8)

HamDist(MOM({γj}Kj=1, xi), yi)

where γj = (γj1, . . . , γ
j
m) are the perturbation pa-

rameters of the i-th example, MOM is the max-
over-marginals algorithm that distills a final tree
from the K sampled trees (§ 4), and HamDist is
the hamming distance between the MOM tree and
the gold tree yi:

HamDist(ym, yi) = (9)
n∑
j=1

{
1 if hym(j) = hyi(j)

0 Otherwise

where n is the number of words in the sentence,
and hy(j) is the head of the j-th word in y.6

We next define the expected empirical loss
(EEL) with respect to the variance of the pertur-
bation distribution:

EEL(σ, S) = (10)
1

N

∑
(xi,yi)∈S

Eγ1,...,γK∼qθ,σ [oracleK({γj}Kj=1, xi, yi)]

And the optimal σ will minimize this loss:

σ∗ = min
σ
EEL(σ, S) (11)

Whenever qθ,σ(γ), the perturbation probability
density function (pdf), is smooth in σ, the EEL is

6The hamming distance is equivalent to the Unlabeled At-
tachment Score (UAS) between the trees.

the integral of a smooth function (the pdf qθ,σ(γ))
and the non-smooth oracle function. In the follow-
ing we prove that this integral is a smooth func-
tion of σ and therefore the optimal variance can be
learned from data by using a gradient method to
solve the problem in Equation 11.

Claim 1. If the probability density function
qθ,σ(γ) is smooth and its gradient is integrable,
i.e.,

∫
|∂qθ,σ(γj)/∂σe|dγj < ∞ then the gradi-

ent of the EEL function with respect to σe as com-
puted on (xi, yi) ∈ S takes the form:

∂EEL(σ)

∂σe
= (12)∑

(xi,yi)∈S

∫
∂qθ,σ(γ

j)

∂σe
oracleK({γj}Kj=1, xi, yi)dγ

j

Proof. The expectation

Eγ1,...,γK∼qθ,σ [oracleK({γ
j}Kj=1, xi, yi)]

is the integral∫ K∏
j=1

qθ,σ(γ
j)f({γj}Kj=1)dγ

1 · · · dγK ,

where f({γj}Kj=1) = oracleK({γj}Kj=1, xi, yi) is
a non-differentiable function. Notably, the func-
tion f({γj}Kj=1) is independent of σ and therefore
its non-differentiability does not affect the differ-
entiability of EEL(σ). Moreover, f({γj}Kj=1) ≤
N for some constant N , therefore the func-
tion qθ,σ(γ

j)f({γj}Kj=1) is bounded by the in-
tegrable function Nqθ,σ(γ

j) and its derivative
with respect to σ is bounded by the function
N |∂qθ,σ(γj)/∂σe|. Following Theorem 2.27 by
Folland (1999) the function EEL(σ) is differen-
tiable and its gradient is attained by differentiating
under the integral.

The above claim shows how to learn the opti-
mal variance of the random perturbation variables
with a gradient method. Note that oracleK and
hence also EEL(σ, S) are defined with respect to
a given K-list size (K). K is a hyper-parameter
that can be estimated using, e.g., a grid-search for
optimal value using development data. Our exper-
iments are with: K = 10, 100, 200 (§ 5).

Once σ and K are determined, we can generate
meaningful samples, i.e., the perturbation value
γeye will not shadow the data signal θeye. We
are now ready to provide a learning process with
perturbation-based K-lists.

Learning with perturbation-based K-lists Our
goal is to train a model so that it can eventually
output a single high-quality structure, y∗, hope-
fully of a higher quality than the output (MAP) of
the Gibbs (base) model. Since joint learning of θ
(the Gibbs model parameters) and σ (the variance
of the perturbation distribution) is intractable, we
first learn θ and then σ.

We assume two training sets: S = {(xi, yi)}Ni=1

and S′ = {(x′i, y′i)}N
′

i=1. Our training recipe is as
follows:

1. Learn the parameters θ of the Gibbs (base)
model with the training set S.

2. Learn the parameter σ and the hyper-
parameter K with the training set S′ by min-
imizing EEL(σ, S′) while keeping the θ pa-
rameters learned at step (1) fixed.

The test-time recipe for the i-th test example is:

1. Sample K values of the perturbation vari-
ables: {γj ∼ qθ,σ|j ∈ {1, . . . ,K}}.

2. for j ∈ {1, . . . ,K} find yγ
j

according to
Equation 4.

3. Extract the final structure y∗ from {yγj}Kj=1.

The only missing piece is the method for ex-
tracting y∗ from {yγj}Kj=1. Note that this method
is employed both at step (2) of the training recipe
(as it is part of the definition of EEL(σ, S′)) and
at step (3) of the test-time recipe. In the next sec-
tion we describe an approximation algorithm for
this problem.

4 Max Over Marginals (MOM)
Inference

Our oracle loss considers the hamming distance
of max-over-marginals (MOM). For this aim, let
us consider the single variable (candidate edge)
marginal probabilities of the Gibbs-perturbation
model:

µe = Pγ [y
γ
e = 1] (13)

We then define the approximated argmax infer-
ence in the Gibbs-perturbation model as predict-
ing the best spanning tree with respect to the log
of these marginals:

y∗ = argmax
y∈T

{∑
e∈E

ye logµe

}
(14)

Notice that for first order parsing, our running
example in this paper, this approach is essentially
identical to the inference algorithm of Kuncoro
et al. (2016), which was aimed at distilling a final
solution from an ensemble of parsers. However,
this MOM approach can naturally be extended be-
yond single variable potentials. For example, we
can consider variable pair potentials or potentials
over variable triplets and perform exact (Koo and
Collins, 2010) or approximated (Martins et al.,
2013; Tchernowitz et al., 2016) inference for sec-
ond and third order problems. Here, for simplicity,
we focus on single variable potentials and solve
the resulting MOM problem directly with an exact
MST algorithm.

In what follows we first show that the MOM
approach – recovering the best spanning tree
according to the log-marginals of one Gibbs-
perturbation model – can be interpreted as a
MAP approach over marginal probabilities of a
continuous-discrete Gibbs model. We then dis-
cuss how we estimate the marginal probabilities
µe (Equation 13).

MOM as MAP of a Continuous-discrete Gibbs
Model We show that MOM in one Gibbs-
perturbation model can be interpreted as MAP
over marginals in another continuous-discrete
Gibbs model.

pM (y1, ..., ym) ∝ exp
(∑
e∈E

ye logµe
)

∝
∏
e

µyee

∝
∏
e

(Pγ [y
γ
e = 1])ye

∝
∏
e

(
Eγ1[y

γ
e = 1]

)ye
(∗) ∝ Eγ(1),...,γ(m)

∏
e

(1[yγ
(e)

e = 1])ye

The starred equivalence holds when the product
function of expectations is the expectation of the
same product function. This equivalence holds
when the random variables 1[yγe = 1] are inde-
pendent. To enforce the independence assump-
tion, the starred equivalence requires an indepen-
dent perturbation vector γ(e) = (γ

(e)
1 , ..., γ

(e)
m) for

each edge.
Using this independence assumption we

are able to represent pM (y1, ..., ym) as
the expectation of a product of functions,

qθ,σ(γ
(e))1[yγ

(e)

e = 1]. This factorization nat-
urally lends a Gibbs model over the factors

ψe(γ
(e), ye)

def
= log(qθ,σ(γ

(e))1[yγ
(e)

e = 1]).
Hence, the MAP assignment of Equation 14 is
the MAP over the structure variables y of the
marginals over the continuous variables γ of the
discrete-continuous Gibbs model:

p(y, γ) ∝ exp
(∑

e

ψe(γ
(e), ye)

)
(15)

Marginals Estimation The last detail required
for the implementation of the MOM inference ap-
proach in Gibbs-perturbation models is recovering
the marginals µe. Unfortunately, we are not aware
of any direct way to do that. Instead, we propose to
approximate the marginals by sampling K times
from the model and computing the marginals us-
ing a maximum-likelihood approach on this sam-
ple. Particularly, in our first-order dependency
parsing example we set µe to be the number of
trees in the K-list that contain the edge e.

As noted above, the idea of computing an MST
over single-edge marginals has been proposed in
Kuncoro et al. (2016) where the marginals were
computed in a manner similar to ours - using
the K parse trees of their K ensemble members.
Our novelty is with respect to the way the de-
pendency trees in the K-list are extracted: while
they built on the non-convexity of neural networks
and ran an LSTM-based parser (Dyer et al., 2015)
from different random initializations, we develop
a perturbation-based framework. Our method for
K-list generation is often more efficient than that
of Kuncoro et al. (2016). While we train a parser
and a noise function and can then generate the K-
list by solving K argmax problems, their method
requires the training of K LSTM parsers.

5 Tasks, Models and Experiments

5.1 Tasks and Data

Data. We consider two dependency parsing
tasks: cross-lingual and mono-lingual but lightly
supervised. For both tasks we consider Version 2.0
of the Universal Dependencies (UD) Treebanks
(Nivre et al., 2016; McDonald et al., 2013).7 The
dataset consists of 77 corpora from 45 languages.
We use the gold POS tags in our experiments.

We excluded 3 languages (Hindi, Urdu and
Japanese) with 5 corpora from the dataset, as

7https://universaldependencies.org/

all models we experiment with (perturbated or
not) demonstrated very poor results on these lan-
guages. An analysis revealed that the head-
modifier distributions in these five corpora are
very different from the corresponding distributions
in the other corpora, which might explain the poor
performance of the parsers.

Task1: Cross-lingual Dependency Parsing. In
this setup, for each corpus we train on all the train-
ing sets of the corpora in the dataset as long as
they are of another language (the source languages
training sets), and test on the test set of the tar-
get corpus. For this purpose, for each of the 72
corpora we constructed a training set of 1000 sen-
tences and a development set of 100 sentences,
taken from the training and the development sets
of the corpora, respectively.8 Then, for each tar-
get corpus we train the parser parameters (θ) on
a training set that consists of the training sets of
all the corpora except from those of the target lan-
guage (the source languages corpora), where for
the non-perturbated models (see below) this train-
ing set is augmented with the development sets of
the source language corpora. For the perturbated
models, the development sets of the source lan-
guages are used for learning the noise parameter
(σ). For test we keep the original test sets of the
UD corpora.

To make the data suitable for cross-language
transfer we discard words from the corpora. The
parsers are then fed with the universal POS tags,
that are identical across languages.

Task2: Lightly Supervised Mono-lingual De-
pendency Parsing. For this setup we chose 12
low-resource languages (13 corpora) which have
between 300 to 5k training sentences: Danish,
Estonian, Greek, Hungarian, Indonesian, Korean,
Latvian, Old Church Slavonic, Persian, Turkish
(2 corpora), Urdu and Vietnamese. For each lan-
guage we randomly sample 300 sentences for its
training set and test on its UD Treebank test set.

In this setup, to keep with the low resource lan-
guage spirit, we do not learn the noise parameter
(σ) but rather use fixed noise parameters for the
perturbated models (see below). As opposed to the
cross-lingual setup, all the parsers are lexicalized,
as this is a mono-lingual setup.

88 corpora had less than 1000 training sentences, and 8
corpora had less than 100 development sentences. For these
we took the entire training or development set, respectively.

https://universaldependencies.org/

Previous Work Recent years have seen substan-
tial efforts devoted to our setups. For cross-lingual
parsing, the proposed approaches include the use
of typological features (Naseem et al., 2012; Täck-
ström et al., 2013; Zhang and Barzilay, 2015;
Ponti et al., 2018; Scholivet et al., 2019), anno-
tation projection and other means of using par-
allel text from the source and target languages
(Hwa et al., 2005; Ganchev et al., 2009; Mc-
Donald et al., 2011; Tiedemann, 2014; Ma and
Xia, 2014; Rasooli and Collins, 2015; Lacroix
et al., 2016; Agić et al., 2016; Vilares et al., 2016;
Schlichtkrull and Søgaard, 2017), similarity mod-
eling for parser selection (Rosa and Zabokrtsky,
2015), late decoding (Søgaard and Schlichtkrull,
2017) and synthetic languages (Wang and Eis-
ner, 2016, 2018b,a). Likewise, lightly super-
vised parsing has been addressed with a vari-
ety of approaches, including co-training (Steed-
man et al., 2003), self-training (Reichart and Rap-
poport, 2007) and inter-sentence consistency con-
straints (Rush et al., 2012).

Our goal is to provide a technique that can en-
hance any machine learning model for structured
prediction in NLP in cases where high quality pa-
rameter estimation is challenging and the argmax
solution is likely not to be the highest quality so-
lution. We choose the tasks of cross-lingual and
lightly supervised dependency parsing since they
form prominent NLP examples for our problem.
We hence focus our experiments on an in-depth
exploration of the impact of our framework on a
dependency parser, rather than on a thorough com-
parison to previously proposed approaches.

5.2 Models and Experiments

Parsing model. We implemented our method
within the linear time incremental parser of Huang
and Sagae (2010).9 While our method is appli-
cable to any parameterized data-driven machine
learning model, including deep neural networks,
we chose to focus here on a linear parser in which
noise injection is straight-forward: all the weights
in the weight vector of the model are perturbated.
We chose to avoid implementation within LSTM-
based parsers (Dyer et al., 2015; Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2017), as in
such models the perturbation parameters may be
multiplied by each other (due to the deep, recur-

9https://github.com/lianghuang3/
lineardpparser

rent, nature of the network) causing second-order
effects. We leave decisions relevant for neural
parsing, e.g. which subset of the LSTM param-
eter set should be perturbated in order to achieve
the most effective model, for future research.

Models and Baselines We compare between
seven models. The main two models are our
perturbation-based parsing models, where the
variance is learned from data. We consider ad-
ditive learned noise (ALN) and multiplicative
learned noise (MLN) (Equations 6 and 7). In
order to quantify the importance of data-driven
noise learning we compare to two identical models
where the variance is not learned from data but is
rather fixed to be 1.10 These baselines are denoted
with AFN and MFN, for additive fixed noise and
multiplicative fixed noise, respectively. As noted
above, for the mono-lingual setup we do not im-
plement the ALN and MLN models so that to keep
the small training data spirit.

The fifth model is the baseline "1-best" parser
- that is, the linear incremental parser with its
original inference algorithm that outputs the so-
lution with the best score under the model’s scor-
ing function. The sixth model, denoted as the "K-
best parser" is a variant of the incremental parser
that outputs the K top scoring solutions under the
parser’s scoring function. The K-best inference al-
gorithm is described in Huang and Sagae (2010)
and is implemented in the parser code that we use.

Finally, while in this paper we do not explore
the integration of perturbations into LSTM-based
parsers, we do want to verify that our methods can
boost a linear parser to improve over such neural
parsers. For this aim, we also compare our results
to the 1-best solution of the transition-based BiL-
STM parser of Kiperwasser and Goldberg (2016).
We refer to this parser as KG (1-best).11

We further explored alternatives to the MOM
inference algorithm for distilling the final tree
from the various K-lists. Among these are train-
ing a feature-rich reranker to extract the best tree
from the list, and extracting the tree that is most or
least similar to the other trees. As all these alter-
natives were strongly outperformed by the MOM
algorithm, we do not discuss them further.

10In our models that do learn the variance, variance values
were in the (0,2] range. We hence consider the value of 1
as a decent proxy to the condition where the variance is not
learned from data.

11Code was downloaded from the first author’s homepage.

https://github.com/lianghuang3/lineardpparser
https://github.com/lianghuang3/lineardpparser

Hyper-Parameters The only hyper-parameter
of the perturbation method is K - the size of the
K-list. As noted in § 3, K can be estimated using,
e.g., a grid-search for optimal value on develop-
ment data. Here we keep with K = 100 as the
major K value throughout our experiments. How-
ever, to get a better understanding of the behavior
of our models as a function of K we also consider
the setups where K = 10 and K = 200.12 All
hyper-parameters for both the incremental parser
and the baseline BiLSTM parser are set to the de-
fault values that come with the authors’ code.

6 Results

Cross-lingual Results: MOM Inference. Our
results are summarized in Table 1. The final trees
extracted by the MOM inference algorithm from
the K-lists of the perturbated models with learned
noise (the additive model ALN and the multiplica-
tive model MLN) are clearly the best ones, with
MLN being the best model both in terms of av-
eraged and median UAS (67.4 and 71.4, respec-
tively) and in terms of the number of corpora for
which it performs best (39 out of 72).

Perturbation models with fixed noise (AFN and
MFN) compare favorably to K-best inference.
However in comparison to 1-best inference, AFN
performs very similarly and MFN is outperformed
in terms of averaged and median UAS. This em-
phasizes the importance of noise (variance) learn-
ing from data. Interestingly, the final tree extracted
by the MOM algorithm from the parser’s K-best
list is worse than the parser’s 1-best tree (averaged
UAS of 58.5 vs. 66.4, median UAS of 62.8 vs.
70.2). Both the K-best and 1-best variants of the
incremental parser do not provide the best UAS on
any of the 72 corpora.

The 1-best solution of the KG BiLSTM parser is
very similar to the 1-best solution of the incremen-
tal parser in terms of averaged and median UAS.
This indicates that the incremental parser to which
we integrate our perturbation algorithm does not
lag behind a more modern neural parser when the
training data is not a good representative of the test
data - the case of interest in this work. Addition-
ally, the KG parser is less stable - it is the best
performing parser on 26 of 72 corpora, but on 34

12For K = 200, we set the beam width parameter of the
parser’s inference algorithm to 5000. Yet, even with this
value the parser did not produce 200 trees for all sentences.
The same pattern was observed for smaller K values, al-
though less frequently.

corpora it is outperformed by the 1-best solution
of the incremental parser, of which on 9 corpora
the gap is larger than 3%. Detailed per language
results are presented in Table 3.

Cross-lingual Results: List Quality. Since the
focus of this paper is on the quality of the K-list,
the table also reports the quality of each model as-
suming an oracle that selects the best tree from
the K-list. Here the table clearly shows that per-
turbation with learned variance (MLN and ALN)
provides substantially better K-lists. For example,
MLN achieves an averaged UAS of 80.3, a median
UAS of 83.4 and it is the best performing model on
58 of 72 corpora.

The gaps from the 1-best and K-best inference
algorithms of the incremental parser as well as
from the KG BiLSTM parser are substantial in this
evaluation. For example, the average and median
UAS of the KG BiLSTM parser are only 66.6 and
69.9, reflecting a gap of 13.7 and 13.5 UAS points
from MLN. Moreover, the non-perturbated meth-
ods do not provide the best results on any of the 72
corpora in this oracle selection evaluation: MLN
is the best performing inference algorithm in 58
cases and MFN in 14 cases.

As in MOM inference, noise learning (MLN
and ALN) continues to outperform perturbation
with fixed noise (MFN and AFN) both in terms of
averaged and median USA. For example the aver-
aged UAS of MLN is 80.3 compared to 77.1 for
MFN, and the number of corpora on which MLN
performs best is 58, compared to 14 of MFN.

The oracle results are very important as they in-
dicate that improving the MOM inference method
has a great potential to make cross-lingual pars-
ing substantially better. None of the other models
we consider extracts K-lists with candidate trees
of the quality that our perturbated models do.

We next consider the quality of the full K-lists
of the different methods, rather than of the oracle
best solutions. Figure 1 (top) compares the aver-
aged UAS of the trees in the 1, 25, 50, 75 and 100
percentiles of the K-lists produced by the various
inference methods. The K-lists of the perturba-
tion based methods are clearly better than those
of the K-best list, with the ALN, AFN and MLN
methods performing particularly well. Likewise,
Figure 1 (bottom) demonstrates that the percent-
age of trees that fall into higher 10% UAS bins is
substantially higher for MLN and ALN compared
to K-best inference (the figure considers all the K-

Method Av. UAS (M) Md. UAS (M) Av. UAS (O) Md. UAS (O) # Cor. (M) # Cor. (O)
1-best 66.4 70.2 66.4 70.2 0 0
K-best 58.5 62.8 74.8 77.1 0 0
AFN 66.6 70.6 73.4 76.9 0 0
MFN 62.6 65.2 77.1 78.7 5 14
ALN 66.9 70.9 76.9 80.4 4 0
MLN 67.4 71.4 80.3 83.4 39 58
KG 66.6 69.9 66.6 69.9 26 0

Table 1: Results summary, cross-lingual parsing, K = 100. We report average (Av.) and median (Md.) UAS
(across languages) of each model with MOM inference (M) and with an oracle that chooses the best tree out of the
K-list produced by the model (O). The # Cor. columns report the number of corpora for which the model is the
best scoring one (in case two models perform best on the same language, it counts for both). For 1-best and KG
(1-best), both MOM (M) and Oracle (O) refer to the single tree produced by the model.

Method A-U (M) M-U (M) A-U (O) M-U (O) #-C (M) #-C (O) A-U-T M-U-T
10-best 63.1 67.4 72.7 75.5 3 5 9.8 10
MLN-10 66.6 70.5 75.1 78.1 69 67 6.86 8
200-best 57.2 60.7 75.1 77.3 0 1 126.1 130
MLN-200 67.6 71.6 83.2 85.8 72 71 92.7 96

Table 2: Cross-lingual parsing results as a function of K, the size of the K list for the K-best and MLN parsers. A-
U and M-U refer to average and median UAS across languages, respectively. #-C refers to the number of corpora
for which the model is the best scoring one. (M) refers to MOM inference, while (O) refers to oracle selection of
the best tree from the list. A-U-T and M-U-T refer to the average and median number of unique trees in the list,
respectively. As noted above, the K-best model cannot generate K trees for all sentences.

lists form the 72 test sets). That is, the perturbated
lists are of higher quality than the K-best lists both
when the oracle solution is considered and when
the full lists are evaluated.

Figure 2 compares the full lists of MLN and
ALN to the unique trees of the lists, in terms of av-
eraged UAS (the bottom graph is limited to MLN,
but the pattern for ALN is similar). The consistent
pattern we observe is that the average quality of
the full lists is higher than that of the unique trees
of the lists. This means that the full lists have mul-
tiple copies of their higher quality trees, a prop-
erty we consider desirable as our goal is to sam-
ple from the score space of the model and hence
higher quality trees should be over-represented.

Cross-lingual Results: Results as a Function of
K. Finally, Table 2 compares the K-lists of the
MLN and the K-best inference algorithms for list
size values (K) of 10 and 200. MLN is clearly
much better both when the final tree is selected
with MOM inference and when it is selected by
the oracle. The two rightmost columns of the table
indicate that the number of unique trees is much
higher in the K-best list, as discussed above.

Lightly Supervised Mono-lingual Results Ta-
ble 4 (which is equivalent to Table 1 for cross-
lingual parsing) and Figure 3 (which is equiva-
lent to Figure 1) summarize the results for the
monolingual setup. We present these results more
briefly due to space limitations. We recall that in
this setup we do not learn the noise, due to the
shortage of training data, but rather used the fixed
noise variance parameter of 1 (§5.2).

The table shows that MFN is the best perform-
ing model both when MOM inference is used and
when the best tree is selected by an oracle. As in
the cross-lingual setup, the gap in the oracle se-
lection case is much larger (e.g. an averaged UAS
gap of 14.8 points from the 1-best parser, the sec-
ond best model) than in the MOM inference setup
(an averaged UAS gap of 1.5 points from 1-best).

However, in certain aspects the results in this
setup indicate a stronger impact of perturbations.
First, MFN performs best on 12 of 13 corpora with
MOM inference and in 13 of 13 corpora with ora-
cle selection. Moreover, its gap from the BiLSTM
parser is larger than in the cross-lingual setup,
probably due to the strong dependence of neural
models on large training corpora.

Finally, Figure 3 presents a similar effect to Fig-

Figure 1: Cross-lingual parsing, K = 100. Top:
Averaged UAS of the trees in the M-th percentile of
the K-list of each model (values were computed for
M = 1, 25, 50, 75, 100). Bottom: Percentage of trees
in each 10% UAS bin, for the K-list of each model. In
both cases the values are calculated across all the trees
in the lists produced for all test sets.

ure 1. The K-lists of the perturbated models are
clearly better than those of the K-best inference,
which is reflected both by the percentile analysis
(top graph) and the UAS histogram that is taken
across all 13 experiments (bottom graph).

7 Additional Setups and Limitations

Our experimental setup has made several limiting
assumptions. Here we address three of these as-
sumptions and explore the extent to which they re-
flect true limitations of our framework.

Additional Task: Cross-lingual POS Tagging
Our main results were achieved with a single in-
cremental linear parser. We next explore the im-
pact of our framework on another task: cross-
lingual POS tagging. Training and development
are performed with the training and development
portions of the English (en) UD corpus (16371
and 3414 sentences, respectively) and the trained
model is applied to six languages (11 corpora)
from four different families: Italian, Portuguese
(both are Italic, Romance), modern Hebrew, Ara-
bic (both are Semitic), Chinese and Japanese.

Our POS tagger is a BiLSTM with two fully
connected (FC) classification layers that are fed

Corpus 1-best K-best ALN MLN AFN MFN KG
Korean 40.4 35.9 40.3 38.1 40.4 41.8 37.9
English 69.2 56.3 69.3 70.1 69.1 67.5 69.1
English_pud 70.1 64.1 70.8 70.9 70.7 66.5 69.6
English_partut 72 66.6 72.6 72.8 72.4 69.9 72.8
English_lines 71 61.4 71.5 72.2 71.3 68.4 70.9
Gothic 63.8 50.1 64 64.3 63.8 57.3 67.3
Czech_pud 74.7 67.4 75.5 75.3 74.9 70.6 74.1
Czech_cac 75.3 66 75.7 76.2 75.6 70.4 75.7
Czech_cltt 69.6 66.3 70.9 71.8 70.3 61.5 64.4
Czech 72 64.2 72.7 73.2 72.3 66.7 72.5
Portuguese 79.1 73 79.7 79.7 79.5 75.2 81.2
Portuguese_br 77.2 73.6 77.6 78 77.3 74 77.4
Portuguese_pud 72.2 68.4 72.5 72.8 72.4 64.9 74
Chinese 34.2 33.4 34.7 35.2 34.5 35 33.9
Ancient_Greek_proiel 59.8 50.6 60.1 61 59.9 55.7 61.5
Ancient_Greek 51.3 43.7 51.7 52.6 51.6 49.3 49.1
Uyghur 32.2 27.9 32.6 33.1 32.4 44.2 42.3
Indonesian 70.2 62.6 70.7 71.5 70.6 64.4 65.4
Romanian 71.9 66 72.8 72.6 72.6 65.4 71.2
Slovak 78 63 78.6 78.3 78 72 76.6
Galician 69.3 67.7 69.9 70 69.6 65.6 72.1
Galician_treegal 77.5 72.2 77.8 78.5 77.7 72.4 80.7
Bulgarian 81.1 67.7 81.9 81.9 81.7 74.7 80.6
Hebrew 63.2 58.7 63.8 63.8 63.4 55.5 64.1
Croatian 72.7 66.8 73.8 73.6 73.3 64.8 73
Kazakh 45.6 33.4 46 47.3 45.7 47.6 53.3
Catalan 77.4 73.3 77.8 78.2 77.6 74.2 79.2
Latin_ittb 63.3 53.8 64 64.3 63.5 60.4 60.8
Latin 49.5 38.4 49.6 50.4 49.2 52.2 47.8
Latin_proiel 55.7 44.9 56.6 56.8 56 54.6 58.1
French 77.6 72.4 77.6 78.2 77 73.1 79.7
French_pud 69.9 67.9 70.6 70.9 70.4 65 72.9
French_sequoia 74.4 69.3 75.1 74.9 74.8 71.8 77.7
French_partut 79.7 75.4 80.2 80.4 79.8 73.8 83
Latvian 54.8 41.7 55 55.9 54.8 53.4 54.1
Greek 75.5 69.3 76.5 76.9 76.3 70.2 74.4
Danish 71 62 71.3 71.8 71.2 66.7 72
Persian 55.7 53.2 57.9 59.1 56.6 55.1 44.2
Dutch_lassysmall 68.5 56.1 68.4 69.1 68 64.6 65.2
Dutch 67.5 59.3 67.4 68 67.1 63.5 63.3
Ukrainian 76.8 64.6 77.6 77.8 77.4 71.7 75.4
Basque 47.4 34.9 47.8 48.4 47.3 42.8 47.3
Estonian 68 52.3 68.7 70.3 68.5 66.4 65.6
Spanish_ancora 76.8 72.6 76.9 77.1 76.6 64.2 78.7
Spanish_pud 72.8 69 73.2 73.7 73.2 66.8 74.4
Spanish 74.9 71.2 75.4 75.5 75.2 70.2 76
Arabic_pud 66.8 58.8 67.2 67.1 66.5 58.8 68.5
Arabic 52.2 51 53.3 55.1 52.6 48.6 56.9
Polish 81.8 57.7 82.5 82.6 82.2 74.8 79.9
Hungarian 60.8 55.7 61.2 62.2 61 57.7 58.1
Italian_pud 79.5 74.8 79.8 79.8 79.6 70.6 81.3
Italian 80.2 73.4 80.3 80.7 80.1 71.5 82
Swedish 76.5 65.1 76.6 76.8 76.5 71.7 76
Swedish_pud 76.4 67.6 76.4 76.8 76.3 72.7 76.1
Swedish_lines 76.5 63.6 76.5 77 76.5 71.5 77
Vietnamese 48.9 41.2 49.8 50.8 49.2 46 41.9
Norwegian_nynorsk 74 64.3 74.1 74.1 73.8 68.2 72.9
Norwegian_bokmaal 77.5 64.6 77.7 77.9 77.4 71.9 76.1
Old_Church_Slavonic 63.2 47.1 63 63.8 62.7 58.1 69.6
Russian_syntagrus 61.4 58.9 61.9 62.4 61.5 59.2 60.6
Russian_pud 72.2 65.8 72.6 73.2 72.3 66.5 71.2
Russian 70.7 63.1 70.6 71.1 70.5 63.9 70
Slovenian 80.8 71.7 81.4 82 81.1 69 80.5
Slovenian_sst 64.7 54.2 65 65.4 64.8 56.3 58.5
Finnish_pud 60 50.4 61.1 61.7 60.7 56.4 60.3
Finnish_ftb 51.2 43.8 51.3 51.6 51.3 51.4 52.4
Finnish 60.9 48.3 61.1 61.4 60.8 54.3 61.3
Turkish_pud 35.2 28.7 36.3 37.7 36 46.2 43.7
Turkish 34.4 28.2 34.7 35.3 34.7 44.2 39.1
Irish 61.2 54.3 61.7 63.4 61 57.9 62.3
German 70.2 60.4 70.9 71.4 70.5 69.5 65.8
German_pud 75.8 68.1 76.5 76.7 76.3 71.3 69.9
Avg. 66.4 58.5 66.9 67.4 66.6 62.6 66.6

Table 3: Corpus UAS, cross-lingual parsing, K = 100.

with the hidden vector produced for each input
word. MLN noise was injected only to the final
FC layer to avoid second-order effects where per-

Method Av. UAS (M) Md. UAS (M) Av. UAS (O) Md. UAS (O) # Cor. (M) # Cor. (O)
1-best 69.2 71.1 69.2 71.1 0 0
K-best 58.4 55.8 77.8 78 0 0
AFN 69.6 71.7 77.7 79.8 0 0
MFN 70.7 72.7 84 83.4 12 13
KG 65.8 66.9 65.8 66.9 1 0

Table 4: Results summary, mono-lingual parsing, K = 100. Table format is identical to Table 1.

Figure 2: Cross-lingual parsing, K = 100. Graphs
format is identical to Figure 1, but the comparison is
between the full K-list and the unique trees in the K-
list for each model.

Figure 3: Mono-lingual parsing, K = 100. Graphs
format is identical to Figure 1.

turbation parameters are multiplied by each other.
While we consider here a deep learning model, the

noise injection scheme is very simple.13

To close the lexical gap between languages we
train the English model with the English fastText
word embeddings (Bojanowski et al., 2017; Grave
et al., 2018). Then, at test time the target lan-
guage fastText embeddings are mapped to a bilin-
gual space with the English embeddings using the
Babylon alignment matrices (Smith et al., 2017).

We consider a K = 100 list size. For our
MLN method we perform greed search over two
ranges of the noise parameter: [0.001, 0.01] and
[0.1,0.5]. Noticing that BiLSTMs predict the POS
of each word independently, beam search cannot
be applied for K-best list generation in this model.
Hence, we generate the K-best list with a greedy
search strategy that gets the 1-best solution of
the model as input and iteratively makes a single
word-level POS change with the minimal (nega-
tive) impact on the model score. When we do that,
we keep track of previously generated solutions so
that to generate K unique solutions. We distilled
the final solution from the K-lists (ours and the K-
best) with a per-word majority vote.

Our results indicate a clear advantage for the
perturbated model. Particularly, for all 11 target
corpora it is the final solution of this model that
scores best. On average across the 11 corpora,
the accuracy of our model is 53.05%, compared to
51.44% of the 1-best solution and 41.56% of the
solution distilled from the K-best list. This low
number of the latter solution is a result of its low
quality lists which contain many poor solutions.

Cross-lingual Parsing with Predicted POS Tags
Our main results were achieved with gold POS
tags. However, in low resource setups gold POS
tags may be unavailable. To explore the impact of
gold POS tags availability on our results we run a
cross-lingual parsing setup identical to the one of
§ 5 with MLN andK = 100, except that the target
language sentences are automatically POS tagged

13BiLSTM layer sizes are: word embedding: 300, output
representations: 256, first FC: 512, second FC: 216.

before they are fed to the parser. We consider the
11 target corpora of the 6 languages in our cross-
lingual POS tagging experiments, and the English-
trained non-perturbated BiLSTM tagger.

The result pattern we observe is very similar to
the cross-lingual parsing with gold POS tags, al-
though the absolute numbers are lower. Particu-
larly, the averaged UAS of the final solution of our
model is 29.8, compared to 26.7 for K-best and
28.1 for 1-best. However, the quality of the per-
turbated list is much higher than that of the K-best
list, as is indicated, for example, in the gap be-
tween their best oracle solutions (46 vs. 37.6).
These results emphasize the importance of high
quality POS tags for cross-lingual parsing. Pre-
sumably, manual POS tagging is a substantially
easier task compared to dependency parsing so
this requirement is hopefully not very restricting.

Well Resourced Monolingual Parsing Finally,
our framework was developed with the motivation
of addressing cases where the argmax solution of
the model is likely not the highest quality one. We
hence focused our experiments in cross-lingual
and lightly-supervised parsing setups. However,
it is still interesting to evaluate our framework in
setups where abundant labeled training data from
the target language is available.

For this aim we implemented an in-language
well-resourced parsing setup, identical to theK =
100 lightly-supervised parsing setup of § 5, except
that the incremental linear parser and the MLN
parameter are trained, developed and tested on
the corresponding portions of a single UD cor-
pus. We run this experiment with 31 corpora of 14
UD languages: Arabic, German, English, Span-
ish, French, Hebrew, Japanese, Korean, Dutch,
Portuguese, Slovenian, Swedish, Vietnamese and
Chinese. We chose these languages in order to ex-
periment with a wide range of corpus sizes. As
in § 5, for the perturbation model the parser is
trained on the training set and the noise parameter
is learned on the development set, while the base
parser is trained on a concatenation of both sets.

In this more challenging setup, the distilled so-
lution of the perturbated parser does not outper-
form the 1-best solution: on average across cor-
pora its UAS is 82.5 while the 1-best scores 82.3.
Interestingly, the distilled solution of the K-best
list achieves an average UAS of only 72.9. How-
ever, in terms of list quality the perturbation model
still excels. For example, the averaged UAS of its

oracle best solution is 91.7 compared to 87.3 of the
K-best list. Likewise, its 25%, 50% and 75% per-
centile solutions score 70.1, 75.2 and 79.6 on av-
erage, respectively, while the respective numbers
for the K-best list are only 58.2, 63.6 and 69.3.
From these results we conclude that our model can
substantially contribute to the quality and diversity
of the extracted list of solutions even in the well-
resourced in-language setup, but that its potential
impact on a single final solution is more limited.

8 Conclusions

We presented a perturbation-based framework for
structured prediction in NLP. Our algorithmic con-
tribution includes an algorithm for data-driven es-
timation of the perturbation variance and a MOM
algorithm for distilling a final solution from the
K-list. An appealing theoretical property of our
method is that it can augment any machine learn-
ing model, probabilistic or not, and draw samples
from a probabilistic model defined on top of that
base model. In setups like cross-lingual and lightly
supervised parsing where the training and the test
data are drawn from different distributions and the
argmax solution of the base model is of low qual-
ity, our method is valuable in extracting a high
quality solution list and it also modestly improves
the quality of the final solution. Yet, we note that
our current implementation mostly applies to lin-
ear models, although we demonstrate initial cross-
lingual results with a BiLSTM POS tagger.

In future work we will aim to develop bet-
ter algorithms for final solution distillation. Our
stronger list quality results indicate that an im-
proved distillation algorithm can increase the im-
pact of our framework. Note, however, that MOM
is used as part of the noise learning procedure (§3)
which yields high quality lists. We would also like
to develop means of effectively applying our ideas
to deep learning models. While theoretically our
framework equally applies to such models, their
layered organization requires a careful selection of
the perturbated parameters and noise values.

Acknowledgements

We would like to thank the action editor and
the reviewers, as well as the members of the
IE@Technion NLP group for their valuable feed-
back and advice. This research was partially
funded by ISF personal grants No. 1625/18 and
948/15.

References

Željko Agić, Anders Johannsen, Barbara Plank,
Héctor Martínez Alonso, Natalie Schluter, and
Anders Søgaard. 2016. Multilingual projec-
tion for parsing truly low-resource languages.
Transactions of the Association for Computa-
tional Linguistics, 4:301–312.

Rachel Bawden and Benoît Crabbé. 2016. Boost-
ing for efficient model selection for syntactic
parsing. In Proceedings of COLING, pages 1–
11.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions of
the Association of Computational Linguistics,
5:135–146.

Leo Breiman. 1996. Bagging predictors. Machine
learning, 24(2):123–140.

Paolo M. Camerini, Luigi Fratta, and Francesco
Maffioli. 1980. The k best spanning arbores-
cences of a network. Networks, 10(2):91–109.

Eugene Charniak and Mark Johnson. 2005.
Coarse-to-fine n-best parsing and MaxEnt dis-
criminative reranking. In Proceedings of ACL,
pages 173–180.

Michael Collins. 2002. Ranking algorithms
for named-entity extraction: Boosting and the
voted perceptron. In Proceedings of ACL, pages
489–496.

Michael Collins and Terry Koo. 2005. Discrim-
inative reranking for natural language parsing.
Computational Linguistics, 31(1):25–70.

Timothy Dozat and Christopher D. Manning.
2017. Deep biaffine attention for neural depen-
dency parsing. In Proceedings of ICLR.

Chris Dyer, Miguel Ballesteros, Wang Ling,
Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependency parsing with stack
long short-term memory. In Proceedings of
ACL, pages 334–343.

Gerald Folland. 1999. Real analysis: Modern
techniques and their applications, john wiley &
sons. New York.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction
via bitext projection constraints. In Proceed-
ings of ACL-AFNLP, pages 369–377.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gre-
gory Shakhnarovich. 2013. A systematic ex-
ploration of diversity in machine translation. In
Proceedings of EMNLP, pages 1100–1111.

Leslie Ann Goldberg and Mark Jerrum. 2007. The
complexity of ferromagnetic Ising with local
fields. Combinatorics Probability and Comput-
ing, 16(1):43.

Daniil Golod. 2009. The k-best paths in Hidden
Markov Models. Algorithms and applications
to transmembrane protein topology recognition.
Master’s thesis, University of Waterloo.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta,
Armand Joulin, and Tomas Mikolov. 2018.
Learning word vectors for 157 languages. In
Proceedings of LREC.

Keith Hall. 2007. K-best spanning tree parsing. In
Proceedings of ACL, pages 392–399.

Tamir Hazan and Tommi Jaakkola. 2012. On
the partition function and random maximum
a-posteriori perturbations. In Proceedings of
ICML, pages 1667–1674.

Tamir Hazan, Subhransu Maji, Joseph Keshet, and
Tommi Jaakkola. 2013. Learning efficient ran-
dom maximum a-posteriori predictors with non-
decomposable loss functions. In Proceedings of
NIPS, pages 1887–1895.

Tamir Hazan, George Papandreou, and Daniel Tar-
low. 2016. Perturbations, Optimization, and
Statistics. MIT Press.

Liang Huang and Kenji Sagae. 2010. Dynamic
programming for linear-time incremental pars-
ing. In Proceedings of ACL, pages 1077–1086.

Rebecca Hwa, Philip Resnik, Amy Weinberg,
Clara Cabezas, and Okan Kolak. 2005. Boot-
strapping parsers via syntactic projection across
parallel texts. Natural language engineering,
11(3):311–325.

Nal Kalchbrenner and Phil Blunsom. 2013. Re-
current continuous translation models. In Pro-
ceedings of EMNLP, pages 1700–1709.

Joseph Keshet, David McAllester, and Tamir
Hazan. 2011. PAC-bayesian approach for mini-
mization of phoneme error rate. In Proceedings
of ICASSP, pages 2224–2227.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing us-
ing bidirectional LSTM feature representations.
Transactions of the Association of Computa-
tional Linguistics, 4:313–327.

Daphne Koller, Nir Friedman, and Francis Bach.
2009. Probabilistic Graphical Models: Princi-
ples and Techniques. MIT press.

Terry Koo and Michael Collins. 2010. Efficient
third-order dependency parsers. In Proceedings
of ACL, pages 1–11.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016.
Distilling an ensemble of greedy dependency
parsers into one MST parser. In Proceedings
of EMNLP, pages 1744–1753.

Ophélie Lacroix, Lauriane Aufrant, Guillaume
Wisniewski, and François Yvon. 2016.
Frustratingly easy cross-lingual transfer
for transition-based dependency parsing. In
Proceedings of HLT-NAACL, pages 1058–1063.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of ICML, pages
282–289.

Jiwei Li and Dan Jurafsky. 2016. Mutual
information and diverse decoding improve
neural machine translation. arXiv preprint
arXiv:1601.00372v2.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama,
Tiejun Zhao, and Eiichiro Sumita. 2018.
Forest-based neural machine translation. In
Proceedings of ACL, pages 1253–1263.

Xuezhe Ma and Fei Xia. 2014. Unsupervised de-
pendency parsing with transferring distribution
via parallel guidance and entropy regulariza-
tion. In Proceedings of ACL, pages 1337–1348.

Wolfgang Macherey, Franz Josef Och, Ignacio
Thayer, and Jakob Uszkoreit. 2008. Lattice-
based minimum error rate training for statis-

tical machine translation. In Proceedings of
EMNLP, pages 725–734.

Chris Maddison, Danny Tarlow, and Tom Minka.
2014. A* sampling. In Proceedings of NIPS,
pages 2085–2093.

Andre Martins, Miguel Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-
order non-projective turbo parsers. In Proceed-
ings of ACL, pages 617–622.

Ryan McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Di-
panjan Das, Kuzman Ganchev, Keith Hall, Slav
Petrov, Hao Zhang, Oscar Täckström, Claudia
Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal dependency annotation
for multilingual parsing. In Proceedings of
ACL, pages 92–97.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajič. 2005. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of EMNLP, pages 523–530.

Ryan McDonald, Slav Petrov, and Keith Hall.
2011. Multi-source transfer of delexicalized de-
pendency parsers. In Proceedings of EMNLP,
pages 62–72.

Tahira Naseem, Regina Barzilay, and Amir
Globerson. 2012. Selective sharing for multi-
lingual dependency parsing. In Proceedings of
ACL, pages 629–637.

Ani Nenkova and Kathleen McKeown. 2011.
Automatic summarization. Foundations and
Trends R© in Information Retrieval, 5(2–3):103–
233.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christo-
pher D. Manning, Ryan McDonald, Slav Petrov,
Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty,
and Daniel Zeman. 2016. Universal dependen-
cies v1: A multilingual treebank collection. In
Proceedings of LREC, pages 1659–1666.

George Papandreou and Alan Yuille. 2011.
Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy
models. In Proceedings of ICCV, pages 193–
200.

Edoardo Maria Ponti, Roi Reichart, Anna Korho-
nen, and Ivan Vulić. 2018. Isomorphic transfer
of syntactic structures in cross-lingual NLP. In
Proceedings of ACL, pages 1531–1542.

Lawrence R. Rabiner. 1989. A tutorial on Hid-
den Markov Models and selected applications
in speech recognition. Proceedings of the IEEE,
77(2):257–286.

Mohammad Sadegh Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer
of dependency parsers. In Proceedings of
EMNLP, pages 328–338.

Roi Reichart and Ari Rappoport. 2007. Self-
training for enhancement and domain adap-
tation of statistical parsers trained on small
datasets. In Proceedings of ACL, pages 616–
623.

Rudolf Rosa and Zdenek Zabokrtsky. 2015.
KLcpos3 - a language similarity measure for
delexicalized parser transfer. In Proceedings of
ACL-IJCNLP, pages 243–249.

Alexander M. Rush, Roi Reichart, Michael
Collins, and Amir Globerson. 2012. Improved
parsing and POS tagging using inter-sentence
consistency constraints. In Proceedings of
EMNLP, pages 1434–1444.

Michael Schlichtkrull and Anders Søgaard. 2017.
Cross-lingual dependency parsing with late de-
coding for truly low-resource languages. In
Proceedings of EACL, pages 220–229.

Manon Scholivet, Franck Dary, Alexis Nasr,
Benoit Favre, and Carlos Ramisch. 2019. Ty-
pological features for multilingual delexicalised
dependency parsing. In Proceedings of HLT-
NAACL, pages 3919–3930.

Noah A. Smith. 2011. Linguistic Structure Predic-
tion. Synthesis Lectures on Human Language
Technologies. Morgan and Claypool.

Samuel L. Smith, David H.P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline bilin-
gual word vectors, orthogonal transformations
and the inverted softmax. In proceedings of
ICLR.

Anders Søgaard and Michael Sejr Schlichtkrull.
2017. Cross-lingual dependency parsing with

late decoding for truly low-resource languages.
In Proceedings of EACL, pages 220–229.

Le Hai Son, Alexandre Allauzen, and François
Yvon. 2012. Continuous space translation mod-
els with neural networks. In Proceedings of
HLT-NAACL, pages 39–48.

David Sontag, Talya Meltzer, Amir Globerson,
Tommi Jaakkola, and Yair Weiss. 2008. Tight-
ening lp relaxations for map using message
passing. In Proceedings of UAI, pages 503–
510.

Mark Steedman, Miles Osborne, Anoop Sarkar,
Stephen Clark, Rebecca Hwa, Julia Hocken-
maier, Paul Ruhlen, Steven Baker, and Jeremiah
Crim. 2003. Bootstrapping statistical parsers
from small datasets. In Proceedings of EACL,
pages 331–338.

Weiwei Sun and Xiaojun Wan. 2013. Data-driven,
PCFG-based and pseudo-PCFG-based models
for Chinese dependency parsing. Transactions
of the Association of Computational Linguis-
tics, 1:301–314.

Mihai Surdeanu and Christopher D. Manning.
2010. Ensemble models for dependency pars-
ing: Cheap and good? In Proceedings of HLT-
NAACL, pages 649–652.

Oscar Täckström, Ryan McDonald, and Joakim
Nivre. 2013. Target language adaptation of dis-
criminative transfer parsers. In Proceedings of
HLT-NAACL, pages 1061–1071.

Daniel Tarlow, Kevin Swersky, Richard S. Zemel,
Ryan Prescott Adams, and Brendan J. Frey.
2012. Randomized optimum models for struc-
tured prediction. In Proceedings of AISTATS,
pages 1221–1229.

Ilan Tchernowitz, Liron Yedidsion, and Roi Re-
ichart. 2016. Effective greedy inference for
graph-based non-projective dependency pars-
ing. In Proceedings of EMNLP, pages 711–720.

Jörg Tiedemann. 2014. Rediscovering annotation
projection for cross-lingual parser induction. In
Proceedings of COLING, pages 1854–1864.

Zhaopeng Tu, Wenbin Jiang, Qun Liu, and
Shouxun Lin. 2012. Dependency forest for

sentiment analysis. In Natural Language Pro-
cessing and Chinese Computing, pages 69–77.
Springer.

Zhaopeng Tu, Yang Liu, Young-Sook Hwang,
Qun Liu, and Shouxun Lin. 2010. Dependency
forest for statistical machine translation. In
Proceedings of COLING, pages 1092–1100.

David Vilares, Carlos Gómez-Rodríguez, and
Miguel A. Alonso. 2016. One model, two lan-
guages: Training bilingual parsers with harmo-
nized treebanks. In Proceedings of ACL, pages
425–431.

Martin J. Wainwright and Michael I. Jordan.
2008. Graphical models, exponential fami-
lies, and variational inference. Foundations and
Trends R© in Machine Learning, 1(1–2):1–305.

Dingquan Wang and Jason Eisner. 2016. The
Galactic Dependencies treebanks: Getting more
data by synthesizing new languages. Transac-
tions of the Association for Computational Lin-
guistics, 4:491–505.

Dingquan Wang and Jason Eisner. 2018a. Surface
statistics of an unknown language indicate how
to parse it. Transactions of the Association for
Computational Linguistics, 6:667–685.

Dingquan Wang and Jason Eisner. 2018b. Syn-
thetic data made to order: The case of parsing.
In Proceedings of EMNLP, pages 1325–1337.

David Bruce Wilson. 1996. Generating random
spanning trees more quickly than the cover
time. In Proceedings of STOC, pages 296–303.

Yuan Zhang and Regina Barzilay. 2015. Hierar-
chical low-rank tensors for multilingual trans-
fer parsing. In Proceedings of EMNLP, pages
1857–1867.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi
Jaakkola, and Amir Globerson. 2014. Steps to
excellence: Simple inference with refined scor-
ing of dependency trees. In Proceedings of
ACL, pages 197–207.

