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Abstract

While cross-domain and cross-language trans-
fer have long been prominent topics in NLP re-
search, their combination has hardly been ex-
plored. In this work we consider this problem,
and propose a framework that builds on pivot-
based learning, structure-aware Deep Neu-
ral Networks (particularly LSTMs and CNNs)
and bilingual word embeddings, with the goal
of training a model on labeled data from one
(language, domain) pair so that it can be effec-
tively applied to another (language, domain)
pair. We consider two setups, differing with re-
spect to the unlabeled data available for model
training. In the full setup the model has ac-
cess to unlabeled data from both pairs, while
in the lazy setup, which is more realistic for
truly resource-poor languages, unlabeled data
is available for both domains but only for the
source language. We design our model for the
lazy setup so that for a given target domain,
it can train once on the source language and
then be applied to any target language without
re-training. In experiments with nine English-
German and nine English-French domain pairs
our best model substantially outperforms pre-
vious models even when it is trained in the lazy
setup and previous models are trained in the
full setup.1

1 Introduction

The field of Natural Language Processing (NLP)
has made impressive progress in the last two
decades and text processing applications are now
performed in a quality that was beyond imagina-
tion only a few years ago. With this success, it is
only natural that researchers seek ways to apply
NLP algorithms in as many languages and textual
domains as possible. However, the success of NLP

1Our code is publicly available at
https://github.com/yftah89/
PBLM-Cross-language-Cross-domain

algorithms most often relies on the availability of
non-trivial supervision such as corpora annotated
with linguistic classes or structures, and for multi-
lingual applications often also on parallel corpora.
This resource bottleneck seriously challenges the
world-wide accessibility of NLP technology.

To address this problem substantial efforts have
been put into the development of cross-domain
(CD, (Daumé III, 2007; Ben-David et al., 2010))
and cross-language (CL) transfer methods. For
both areas, while a variety of methods have been
developed for many tasks throughout the years
(§ 2), with the prominence of deep neural networks
(DNNs) the focus of modern methods is shift-
ing towards learning data representations that can
serve as a bridge across domains and languages.

For CD, this includes: (a) pre-DNN work
((Blitzer et al., 2006, 2007), known as structural
correspondence learning (SCL)), that models the
connections between pivot features – features that
are frequent in the source and the target domains
and are highly correlated with the task label in
the source domain – and the other, non-pivot, fea-
tures; (b) DNN work (Glorot et al., 2011; Chen
et al., 2012) which employs compress-based noise
reduction to learn cross-domain features; and re-
cently also (c) works that combine the two ap-
proaches (Ziser and Reichart, 2017, 2018) (hence-
forth ZR17 and ZR18). For CL, the picture is sim-
ilar: multilingual representations (usually word
embeddings) are prominent in the transfer of NLP
algorithms from one language to another (e.g.
(Upadhyay et al., 2016)).

In this paper we aim to take CL and CD trans-
fer a significant step forward and design meth-
ods that can adapt NLP algorithms simultane-
ously across languages and domains. We consider
this research problem fundamental to our field as
manually annotated resources are often scarce in
many domains, even for languages that are consid-
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ered resource-rich. With effective cross-language
cross-domain (CLCD) methods it is sufficient to
have training resources in a single domain of one
language in order to solve the task in any other
(language, domain) pair.

As a first step, our focus in this work is on the
task of sentiment classification that has been ex-
tensively researched in the CD literature. Surpris-
ingly, even for this task we are aware of only one
previous work that aims to perform CLCD learn-
ing (Fernández et al., 2016). However, this work
does not employ modern DNN techniques and is
substantially outperformed by our methods.

Our approach to CLCD learning is rooted in
the family of methods that combine the power of
both DNNs and pivot-based ideas, and is based
on two principles. First, we build on the re-
cent progress in learning multilingual word em-
beddings (Ruder et al., 2017). Such embeddings
help close the lexical gap between languages as
they map their different vocabularies to a shared
vector space. Second, we follow (Prettenhofer and
Stein, 2010, 2011; Fernández et al., 2016) and re-
define the concept of pivot features for CLCD se-
tups (§ 5). While these authors already employed
this idea in order to design pivot-based methods
in CL (Prettenhofer and Stein, 2010, 2011) and
CLCD (Fernández et al., 2016) for text classifi-
cation and sentiment analysis, their algorithms do
not employ DNNs and multilingual embeddings.
In this paper we show that it is the combination
of bilingual word embeddings (BEs) and structure
aware DNNs with the re-defined pivots that leads
to high quality CLCD models.

Aiming to facilitate transfer to resource poor
languages and domains, our methods rely on as
little supervision as possible. Particularly, we
explore two scenarios. In the first, full CLCD
setup, models have access to manually annotated
reviews from the source (language, domain) pair,
and unannotated reviews from both the source and
the target (language, domain) pairs. In the sec-
ond, lazy CLCD setup, models have access only to
source language reviews - annotated reviews from
the source domain, and unannotated reviews from
both the source and the target domains.

We consider the lazy setup to be the desired
standard setup of CLCD learning for two reasons.
First, in true resource-poor languages we expect it
to be hard to find a sufficient number of reviews
from many domains, even if they are unannotated

(imagine for example trying to obtain 50K unla-
beled spinner reviews in Swahili). Second, it al-
lows a train once, adapt everywhere mode: instead
of training a separate model for each target lan-
guage, in this setup for each target domain only a
single model is trained on the source language, and
the target language is considered only at test time
through BEs (§ 5). Notice that in order to allow the
lazy setup, the BEs should be trained such that the
source language embeddings have no knowledge
about any particular target language. In § 5 we
discuss the BEs we employ (Smith et al., 2017),
which have this property.

We create CLCD variants of DNN- and pivot-
based methods originally designed to learn ef-
fective representations for CD learning. To the
best of our knowledge, there are three such meth-
ods, which employ two types of DNNs (§ 4):
(a) AE-SCL and AE-SCL-SR (Ziser and Reichart,
2017) that integrate pivot-based ideas (SCL) with
autoencoder-based (AE) noise reduction; and (b)
pivot-based language modeling (PBLM, (Ziser
and Reichart, 2018)) that combines pivot-based
ideas with LSTMs for representation learning, and
integrates this architecture with an LSTM or a
CNN for task classification. In § 5 we discuss how
to employ these methods for CLCD transfer where
the lexical gap between languages is bridged by
pivot translation and BEs, and show that PBLM
allows for more effective transfer.

We address the task of binary sentiment classifi-
cation and experiment with nine English-German
and nine English-French domain pairs (§ 6, 7).
Our PBLM-based models substantially outper-
form all previous models, even when the PBLM
model is trained in the lazy setup and the previous
models are trained in the full setup.

2 Previous Work

We briefly survey work on CL and CD learning
and on multilingual word embeddings. We focus
on aspects that are relevant to our work rather than
on a comprehensive survey of the extensive previ-
ous work on these problems.

Cross-language transfer CL has been explored
extensively in NLP. Example applications include
POS tagging (Täckström et al., 2013), syntactic
parsing (Guo et al., 2015; Ammar et al., 2016),
text classification (Shi et al., 2010; Prettenhofer
and Stein, 2010) and sentiment analysis (Wan,
2009; Zhou et al., 2016) among others.



Our work is mostly related to two works: (a)
Cross-lingual SCL (CL-SCL, (Prettenhofer and
Stein, 2010, 2011)); and (b) Distributional Cor-
respondence Indexing (DCI, (Fernández et al.,
2016)) – in both cases pivot features were re-
defined to support CL (in (a)) and CLCD (in (b))
with non-DNN models, in order to perform senti-
ment analysis. Below we show how we combine
this idea with modern DNNs and BEs to substan-
tially improve CLCD learning.

Cross-domain transfer In NLP, CD transfer
(a.k.a domain adaptation) has been addressed
for many tasks, including sentiment classification
(Bollegala et al., 2011b), POS tagging (Schnabel
and Schütze, 2013), syntactic parsing (Reichart
and Rappoport, 2007; McClosky et al., 2010; Rush
et al., 2012) and relation extraction (Jiang and
Zhai, 2007; Bollegala et al., 2011a), if to name a
handful of examples.

Several approaches to CD transfer have been
proposed in the ML literature, including instance
reweighting (Huang et al., 2007; Mansour et al.,
2009), sub-sampling from both domains (Chen
et al., 2011) and learning joint target and source
feature representations. Representation learning,
the latter, has become prominent in the DNN era,
and is the approach we take here. As noted in
§ 1 we adopt CD models that integrate pivot-based
learning with DNNs to perform CLCD.

Multilingual word embeddings Multilingual
word embeddings learning is an active field of re-
search. For example, Ruder et al. (2017) compare
49 papers that have addressed the problem since
2011. Such embeddings are of importance as they
provide means of bridging the lexical gap between
languages, which supports CL transfer.

Surveying this extensive literature is well be-
yond our scope. Since our focus is on perform-
ing CLCD with minimal supervision, we quote
Ruder et al. (2017) that categorize multilingual
embedding methods with respect to two criteria
on the data they require for their training: (a) type
of alignment (word, sentence or document); and
(b) comparability (parallel data: exact translation,
vs. comparable data: data that is only similar).
The BEs we use in our work are those of Smith
et al. (2017) that require several thousands trans-
lated words as a supervision signal. That is, except
from BEs induced using comparable word align-
ment signals – words aligned through indirect sig-

nals such as related images or through compara-
bility of their features (e.g. POS tags) – the BEs
we employ belong to the class of the most mini-
mal supervision. In addition, as noted in § 1, in
order to allow the lazy CLCD setup, we would
like BEs where the source language embeddings
are induced with no knowledge of the target lan-
guage, and we indeed choose such BEs (§ 5).

3 Task Definition

The task we address is cross-language cross-
domain (CLCD) learning. Formally, we are given
a set of labeled examples from language Ls and
domain Ds (denoted as the pair (Ls, Ds)). Our
goal is to train an algorithm that will be able to
correctly label examples from languageLt and do-
main Dt (Lt, Dt). The same label set, T , is used
across the participating source and target domains
and languages.

The setup we consider is similar in spirit to
the setup known as unsupervised domain adap-
tation (e.g. (Blitzer et al., 2007; Ziser and Re-
ichart, 2017, 2018)). When taking the represen-
tation learning approach to CLCD learning, the
training pipeline usually consists of two steps. In
the first step, the representation learning model is
trained on unlabeled data from the source and tar-
get languages and domains, with the goal of gener-
ating a joint representation for the source and the
target. Below we describe the unlabeled data in
the full and the lazy CLCD setups. In the second
step, a classifier for the supervised task is trained
on the (Ls, Ds) labeled data. To facilitate lan-
guage and domain transfer, every example that is
fed to the task classifier in this second step is first
represented by the representation model that was
trained with unlabeled data at the first step. This is
true both when the task classifier is trained and at
test time when it is applied to data from (Lt, Dt).

We consider two setups which differ with re-
spect to the unlabeled examples available for the
representation learning model. In the full CLCD
setup, the training algorithm has access to unla-
beled examples from both (Ls, Ds) and (Lt, Dt).
Since for truly resource poor languages it may be
challenging to find a sufficient number of unla-
beled examples from (Lt, Dt), we also consider
the lazy setup where the training algorithm has ac-
cess to unlabeled examples from (Ls,Ds) and (Ls,
Dt) – that is, target domain unlabeled examples
are available only in the source language.



4 Preliminaries

In this paper we aim to adapt CD models that inte-
grate the power of DNNs and of pivot-based learn-
ing so that they can be applied to CLCD learn-
ing. In this section we hence briefly describe the
works in this line. We start with the concept of do-
main adaptation using pivot-based methods, con-
tinue with works that are based on autoencoders
and end with works that are based on sequence
modeling with LSTMs.

Pivot based domain adaptation This approach
was proposed by Blitzer et al. (2006, 2007),
through their SCL method. Its main idea is to
divide the shared feature space of the source and
the target domains to a set of pivot features that
are: (a) frequent in both domains; and (b) have a
strong correlation with the task label in the source
domain labeled data. The features which do not
comply with at least one of these criteria form a
complementary set of non-pivot features.

In SCL, after the original feature set is divided
into the pivot and non-pivot subsets, this divi-
sion is utilized in order to map the original fea-
ture space of both domains into a shared, low-
dimensional, real-valued feature space. To do so,
a binary classifier is defined for each of the pivot
features. This classifier takes the non-pivot fea-
tures of an input example as its representation,
and is trained on the unlabeled data from both the
source and the target domains, to predict whether
its associated pivot feature appears in the example
or not. Note that no human annotation is required
for the training of these classifiers, the supervision
signal is in the unlabeled data. The matrix whose
columns are the weight vectors of the classifiers is
post-processed with singular value decomposition
(SVD) and the derived matrix maps feature vectors
from the original space to the new.

Since the presentation of SCL, pivot-based
cross-domain learning has been researched exten-
sively (e.g. (Pan et al., 2010; Gouws et al., 2012;
Bollegala et al., 2015; Yu and Jiang, 2016; Yang
et al., 2017)).

4.1 Autoencoder Based Methods
An autoencoder (AE) is comprised of an encoder
function e and a decoder function d, and its output
is a reconstruction of its input x: r(x) = d(e(x)).
The model is trained to minimize a loss between x
and r(x). Over the last decade AEs have become
prominent in CD learning with methods such as

Stacked Denoising Autoencoders (SDA, (Vincent
et al., 2008; Glorot et al., 2011) and marginalized
SDA (MSDA, (Chen et al., 2012)) outperforming
earlier state-of-the-art methods that were based on
the concept of pivots but did not employ DNNs
(Blitzer et al., 2006, 2007). A survey of AE-based
models in CD learning can be found in ZR17.

ZR17 combined AEs and pivot-based modeling
for CD learning. Their basic model (AE-SCL) is a
feed-forward NN where the non-pivot features of
the input example are encoded into a hidden rep-
resentation that is then decoded into the pivot fea-
tures of the example. Their advanced model (AE-
SCL-SR) is identical in structure but its recon-
struction matrix is fixed and consists of pre-trained
embeddings of the pivot features, so that input ex-
amples with similar pivots are biased to have sim-
ilar hidden representations. Since no CL learning
was attempted in that work, the pre-trained em-
beddings used in AE-SCL-SR are monolingual.
Both models are illustrated in Figure 1.

After one of the above representation models is
trained with unlabeled data from the source and
target domains, it is employed when training the
task (sentiment analysis) classifier and when ap-
plying this classifier to test data. ZR17 learned a
standard linear classifier (logistic regression), and
fed it with the hidden representation of AE-SCL
or AE-SCL-SR. They demonstrated the superior-
ity of their models (especially, AE-SCL-SR) over
non-DNN pivot-based methods and a variety of
AE-based methods that do not consider pivots.

4.2 LSTM Based Methods

ZR18 observed that AE-based representation
learning models do not exploit the structure of
their input examples. Obviously, this can nega-
tively impact text classification tasks, such as sen-
timent analysis. They hence proposed a structure-
aware representation learning model, named Pivot
Based Language Modeling (PBLM, Figure 2a).

PBLM is an LSTM fed with the embeddings of
the input example words. As is standard in the
LSTM literature, it is possible to feed the model
with 1-hot word vectors and multiply them by a
(randomly initialized) embeddings matrix (as done
by ZR18) or to feed the model with pre-trained
embeddings. In this paper we consider both op-
tions, taking advantage of the second in order to
feed the model with BEs.

In contrast to standard LSTM-based language
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Figure 1: An illustrations of the AE-SCL and
AE-SCL-SR models (figure imported from ZR17).
xnp is a binary vector indicating whether each of
the non-pivot features appears in the input exam-
ple or not. xp is a similar vector defined with re-
spect to pivot features. o, the output vector of the
model, provides the probability that each of the
pivot features appears in the example, according
to the model. The loss function of both models is
the cross-entropy loss between o and xp. While in
AE-SCL both the encoding matrix wh and the re-
construction matrixwr are optimized, in AE-SCL-
SR wr consists of pre-trained word embeddings.

models that predict at each point the most likely
next input word, PBLM predicts the next input un-
igram or bigram if one of these is a pivot (if both
are, it predicts the bigram) and NONE otherwise.
Similarly to AE-SCL and AE-SCL-SR, PBLM is
trained with unlabeled data from both the source
and target domains.

consider the example in Figure 2a, provided in
ZR18 for adaptation of a sentiment classifier be-
tween English book reviews and English reviews
of kitchen appliances. PBLM learns the connec-
tion between witty - an adjective that is often used
to describe books, but not kitchen appliances - and
great - a common positive adjective in both do-
mains, and hence a pivot feature. Another exam-
ple in ZR18 for the same domain pair (see Figure 1
in their paper) is: ”I was at first very excited with
my new Zyliss salad spinner - it is easy to spin
and looks great”, from this sentence PBLM learns
the connection between easy - an adjective that is
often used to describe kitchen appliances, but not
books - and great. That is, PBLM is able to learn
the connection between witty and easy to facilitate
adaptation between the domains.

PBLM can naturally feed a structure-aware task
classifier. Particularly, in the PBLM-CNN ar-

very witty great story not bad overall
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NONENONENONEgreat NONE
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Figure 2: The PBLM model (figure imported form
ZR18). (a) The PBLM representation learning
model. (b) Adapting a classifier with PBLM: the
PBLM-CNN model where PBLM representations
are fed into a CNN task classifier.

chitecture that we consider here (Figure 2b),2

the PBLM’s softmax layer (that computes the
probabilities of each pivot to be the next uni-
gram/bigram) is cut and a matrix whose columns
are the PBLM’s ht vectors is fed to the CNN.

ZR18 demonstrated the superiority of PBLM-
CNN over AE-SCL, AE-SCL-SR and a variety
of other previous models, emphasizing the impor-
tance of structure-awareness in CD transfer. We
next discuss the adaptation of these models so that
they can perform CLCD learning.

5 Cross-language Cross-domain Transfer

The models described in the previous section em-
ploy pivot-based learning (all models) and allow
a convenient integration of BEs (AE-SCL-SR and
PBLM). Below we discuss how we adapt these
models so that they can perform CLCD learning.

2ZR18 also considered a PBLM-LSTM architecture
where the PBLM representations feed an LSTM classifier.
We focus on PBLM-CNN which demonstrated superior per-
formance in 13 of 20 of their experimental setups.



Pivot translation We follow (Prettenhofer and
Stein, 2010, 2011; Fernández et al., 2016) and re-
define pivot features to be features that: (a) are
frequent in (Ls, Ds) and that their translation is
frequent in (Lt, Dt) ; and (b) are highly correlated
with the task label in (Ls, Ds) . Note, that ex-
cept for the translation requirement in (a) this is
the classical definition of pivot features (§ 1).

Translated pivots are integrated into the mod-
els in a way that creates a shared cross-lingual
output space. For both PBLM and the AE-based
models a source language pivot feature and its
translation are considered to be the same pre-
dicted class of the model. Consider, for exam-
ple, a setup where we learn representations in or-
der to adapt a classifier from (English, books)
to (French, music). The pivot feature magnifi-
cent(English)/magnifique(French) will be consid-
ered the same PBLM prediction when trained on
the unlabeled data from both (Ls, Ds) and (Lt,
Dt). Similarly, in AE-SCL and AE-SCL-SR mag-
nificent and magnifique will be assigned the same
coordinate in the xp (gold standard pivot indica-
tors) and o (model output) vectors. In the lazy
setup, where training is done with unlabeled data
from (English, books) and (English, music) pivot
translation is irrelevant as the representation learn-
ing model is trained only in the source language.

Note that when only pivot translation is used
to make the CD methods address CLCD learning,
the input space is not shared across languages. In-
stead, 1-hot vectors are used to encode the vocab-
ularies of both languages, whose overlap is lim-
ited. This mismatch is somewhat reduced when
training on unlabeled data from both (Ls, Ds) and
(Lt, Dt). That is, we rely on the trained parame-
ters of the models to align the input spaces when
trained on unlabeled data from both (Ls, Ds) and
(Lt, Dt).

In § 7 we show that this technique alone leads
to improved CLCD results compared to existing
methods. The lazy setup, however, is not sup-
ported by this technique, as training is not per-
formed on unlabeled data from the target lan-
guage. We next describe how to integrate BEs into
our models, which provides a shared input layer
that is crucial for both full and lazy CLCD.

Multilingual word embeddings Translated
pivot features provide the models with a shared
output layer. But can we use the same mechanism
in order to map the input layers of the models into

a shared cross-lingual space ?

Unfortunately, word-level translation does not
seem like the right solution to this problem, due
to two reasons. First, word-level translation is in-
herently ambiguous – it is very frequent that the
set of senses associated with a given word in one
language, is not identical to the set of senses asso-
ciated with any other word in another given lan-
guage. Moreover, large scale word-level trans-
lation may impose prohibitively high costs – ei-
ther financial or in human time. Hence word-level
translation is feasible mostly when dealing with a
relatively small number of pivot features. The in-
put layers of the models, consisting of words from
the entire vocabulary (PBLM) or of non-pivot un-
igrams and bigrams (AE-SCL and AE-SCL-SR),
require a cheaper and more stable mapping.

Our solution is hence based on BEs which em-
bed words from the source and the target language
in a shared vector space. As discussed in § 2 the
BEs we use are those of Smith et al. (2017) that
require several thousands of translated word pairs
as a supervision signal, which reflects a low super-
vision level (Ruder et al., 2017). While bilingual
word embedding models do not provide accurate
word-level translation (to the level that such trans-
lation is possible), they do embed words from the
two languages that have similar meaning with sim-
ilar vectors, in terms of euclidean distance.

The BEs of Smith et al. (2017) also have the
property required for our lazy setup: they are in-
duced such that the source language embeddings
have no knowledge of any particular target lan-
guage. The embedding algorithm achieves that by
learning two sets of monolingual embeddings and
then aligning them with an SVD-based method.

Once we obtain the BEs, it is straightforward to
integrate them into the PBLM model. We start by
considering the full CLCD setup. When PBLM
is applied to text from (Ls, Ds) – both when it is
trained with unlabeled data (Figure 2a) and when
it is used as part of the task classifier, when this
classifier is trained with labeled data (Figure 2b) –
the BEs of the source language words are fed into
the model. Likewise, when PBLM is applied to
text from (Lt, Dt) – both when it is trained with
unlabeled data and when it is used as part of the
task classifier when this classifier is applied to test
data – it is fed with the bilingual representations
of the target language words. In the lazy setup, the
details are very similar except that PBLM is not



trained with unlabeled data from (Lt, Dt), only
with unlabeled data from (Ls, Ds) and (Ls, Dt).

Unfortunately, BEs do not provide a sufficient
solution for the AE-based models. In AE-SCL
the input layer consists of a non-pivots indicator
vector, xnp, that cannot be replaced by embedding
vectors in a straight forward manner. In AE-SCL-
SR the input layer is identical to that of AE-SCL,
but this model replaces the reconstruction matrix
wr with a matrix whose rows consist of pre-trained
word embeddings of the pivot features. Hence,
similarly to PBLM we can construct a wr matrix
with the source language BEs when this model is
applied to source language data, and with target
language BEs when this model is applied to target
language data. This construction of wr provides
an additional shared cross-lingual layer, added to
the translated pivot features of the output layer.

Consequently, an inherent limitation of the AE-
based models when it comes to CLCD transfer, is
that they cannot be employed in the lazy setup.
The intersection of their input spaces when ap-
plied to the source and the target languages is lim-
ited to the vectors representing the shared vocab-
ulary items (see above in this section). Hence,
these models have to be trained with unlabeled
data from both languages in order to align the in-
put layers of the two languages with each other.

6 Experiments

Task and data 3 As in our most related pre-
vious work (Prettenhofer and Stein, 2010, 2011;
Fernández et al., 2016) we experiment with the
Websis-CLS-10 dataset (Prettenhofer and Stein,
2010) consisting of Amazon product reviews writ-
ten in 4 languages (English, German, French and
Japanese), from 3 product domains (Books (B),
DVDs (D) and Music (M)). Due to our extensive
experimental setup we leave Japanese for future.4

For each (language, domain) pair the dataset
includes 2000 train and 2000 test documents, la-
beled as positive or negative, and between 9,358
to 50,000 unlabeled documents. As in the afore-
mentioned related works, we consider English as
the source language, as it is likely to have labeled
documents from the largest number of domains.

3The URLs of the code (previous models and standard
packages) and data we used, are in the appendix.

4We add an English domain to our experiments. More-
over, training the models we consider here is substantially
more time consuming as we employ DNNs, as opposed to
previous methods that use linear classifiers.

Following ZR18 we also consider a more chal-
lenging setup where the English source domain
consists of user airline (A) reviews (Nguyen,
2015). We use the dataset of ZR18, consisting of
1000 positive and 1000 negative reviews in the la-
beled set, and 39396 reviews as the unlabeled set.

We employ a 5-fold cross-validation protocol.
In all folds 1600 (English, Ds) train-set examples
are randomly selected for training and 400 for de-
velopment. The German and French test sets are
used in all folds. All sets contain the same number
of positive and negative reviews. For each model
we report averaged performance across the folds.

The BEs were downloaded from the author’s
github. More details are in the appendix.

Models and baselines Our main model is
PBLM+BE that is trained in the full setup and em-
ploys both translated pivots for CL output align-
ment and BEs for CL input alignment (§ 5).
We also experiment with PBLM+BE+Lazy: the
same model employed in the lazy setup, and with
PBLM: a model similar to PBLM+BE except that
BEs are not employed.

We further experiment with AE-SCL that em-
ploys translated pivots for CL output alignment
and AE-SCL-SR that does the same and also in-
tegrates BEs into its fixed reconstruction matrix.
Following ZR17 and ZR18 the linear classifier we
use is logistic regression. To compare to previous
work, we implemented the CL-SCL and the DCI
models, for which we use the cosine kernel that
performs best in (Fernández et al., 2016).

To consider the power of BEs, we experiment
with a classifier fed with the BEs of the input doc-
ument’s words. We consider both a CNN classi-
fier (where the BEs are fed into the columns of the
CNN input matrix) and logistic regression (where
the embeddings of the document’s words are av-
eraged) and report results with CNN as they are
superior. We denote this model with BE+CNN.

For reference, we also compare to a setup where
Ls = Lt, and to a setup where Ls = Lt and
Ds = Dt. For these setups we report results with
a linear classifier with unigram and bigram fea-
tures, as it outperforms both a linear classifier and
a CNN with BE features. The models are denoted
with Linear-IL and Linear-ILID, respectively (IL
stands for in-language and ID for in-domain).

Pivot features For all models we consider un-
igrams and bigrams as features. To divide these



Product Review Domains (Websis-CLS-10,(Prettenhofer and Stein, 2010)), CLCD
English-German English-French

Source-Target D-B M-B B-D M-D B-M D-M All D-B M-B B-D M-D B-M D-M All
PBLM Models

PBLM+BE 78.7 78.6 80.6 79.2 81.7 78.5 79.5 81.1 74.7 76.3 75.0 75.1 76.8 76.5
PBLM 70.9 62.9 74.5 66.5 75.0 75.5 71.0 76.0 67.9 70.3 69.9 67.3 70.4 70.3
PBLM+BE+lazy 74.8 74.0 75.1 72.8 73.3 73.7 73.9 74.2 73.1 75.3 74.4 74.1 72.4 73.9

Autoencoder+pivot Models
AE-SCL-SR 68.3 62.5 69.4 69.9 70.2 69 67.4 69.3 68.9 70.9 70.7 67 71.4 69.7
AE-SCL 67.9 63.7 68.7 63.8 69.0 70.1 67.2 68.6 66.1 69.2 69.4 66.7 68.1 68.0

Pivot-based (no DNN) Models
CL-SCL 65.9 62.5 65.1 65.2 71.2 69.8 66.7 70.3 63.8 68.8 66.8 66.0 70.1 67.6
DCI 67.1 60.6 66.9 66.7 68.9 68.2 66.4 71.2 65.4 69.1 67.5 66.7 71.4 68.6

CLCD without CD Learning
BE+CNN 62.8 63.8 65.3 68.7 71.6 72.0 67.3 69.5 59.7 63.7 65.7 65.9 67.0 65.2

Airline (English, (Nguyen, 2015)) to Product Review Domains (German or French), CLCD
English-German English-French

Source-Target A-B A-D A-M All A-B A-D A-M All
PBLM Models

PBLM+BE 67.9 62.5 63.6 64.6 63.5 66.9 64.8 65.1
PBLM 60.9 59.6 60.1 60.2 60.9 61.9 58.9 60.5
PBLM+BE+lazy 66.3 65.0 66.6 66.0 65.7 65.6 69.0 66.8

Autoencoder+pivot Models
AE-SCL-SR 55.8 57.5 60.8 58 55.8 52.9 56.3 55.7
AE-SCL 55.9 56.2 58.2 56.8 55.8 52.9 56.4 55.0

Pivot-based (no DNN) Models
CL-SCL 56.6 52.6 53.7 54.3 52.7 54.5 53.1 53.4
DCI 55.9 52.1 54.5 54.1 53.1 53.7 53.9 53.5

CLCD without CD Learning
BE+CNN 59.4 61.2 61.3 60.6 57.9 55.3 56.2 56.5

Product Review Domains (Websis-CLS-10,(Prettenhofer and Stein, 2010)), Within Language
German-German French-French

Source-Target D-B M-B B-D M-D B-M D-M All D-B M-B B-D M-D B-M D-M All
In-language cross-domain learning (no CD technique is employed)

Linear-IL 81.5 78.9 77.8 76.7 77.6 79.8 78.7 80.2 78.2 79.2 79.7 78.5 79.7 79.3
In-language, In-domain learning

Source-Target B-B – D-D – M-M – All B-B – D-D – M-M – All
Linear-ILID 84.2 – 81.5 – 83.3 – 83 84.1 – 79.2 – 85.8 – 83

Table 1: Sentiment accuracy. Top: CLCD transfer in the product domains. Middle: CLCD transfer
from the English airline domain to the French and German product domains. Bottom: within language
learning for the target languages. The ”All” columns refer to the average over the setups in each table.

features into pivots and non-pivots we follow
(Blitzer et al., 2007; Ziser and Reichart, 2017,
2018). Pivots are translated with Google translate.
Pivot features are frequent in the unlabeled data of
both the source and the target (language, domain)
pairs: we require them to appear at least 10 times
in each. Among those frequent features we select
the ones with the highest mutual information with
the task (sentiment) label in the source (language,
domain) labeled data. For non-pivot features we
consider unigrams and bigrams that appear at least
10 times in one of the (language, domain) pairs.5

5The average number of pivot features per review is ∼14
in the product to product experiments, and ∼11 when the air-
line domain and a product domain are involved.

Hyper-parameter tuning For all models we
follow the tuning process described in the original
papers. Details are in the appendix.

7 Results

Our results (Table 1) support the integration of
structure-aware DNNs, translated pivots and BEs
as advocated in this paper. Indeed, PBLM+BE
which integrates all these factors and trained in
the full setup is the best performing model in all
12 product setups (top table) and in 2 of 6 airline-
product setups (middle table). PBLM+BE+lazy,
the same model when trained in the lazy setup in
which no target language unlabeled data is avail-
able for training, is the second best model in 9 of



12 product-product setups (in the other three se-
tups only PBLM+BE and PBLM perform better)
and is the best performing model in 4 of 6 airline-
product setup and on average across these setups.

To better understand this last surprising result of
the airline-product setups, we consider the pivot
selection process (§ 6): (a) sort the source fea-
tures by their mutual information with the source
domain sentiment label; and (b) iterate over the
pivots and exclude the ones whose translation fre-
quency is not high enough in the target domain.

Let’s examine the number of feature candidates
that should be considered (in step (b)) from the
list of criterion (a) in order to get 100 pivots. In
product to product domain pairs: 182; In airline to
product domain pairs: 304 (numbers are averaged
across setups). In the lazy setup (where no pivot
translation is performed) the corresponding num-
bers are: product to product domain pairs: 148;
airline to product domain pairs: 173.

Hence, for domain pairs that involve airline
and product, in the full setup many good piv-
ots are lost in translation which affects the rep-
resentation learning quality of PBLM+BE. While
PBLM+BE+lazy does not get access to target lan-
guage data, many more of its pivot features are
preserved. We hypothesize that this can be one
reason to the surprising superior performance of
PBLM+BE+lazy when adapting from airline to
product domains.

The success of PBLM+BE+lazy provides a par-
ticularly strong support to the validity of our ap-
proach, as this model lacks a major source of su-
pervision available to the other CLCD models. As
noted in § 1, we believe that the lazy setup is cru-
cial for the future of CLCD learning.

Excluding BEs (PBLM) or changing the model
to not generate a shared cross-lingual input layer
(AE-SCL-SR that is also unaware of the re-
view structure) results in substantial performance
degradation. PBLM is better on average for all
four CLCD setups, which emphasizes the impor-
tance of structure-awareness. Excluding both BEs
and structure-awareness (AE) yields further degra-
dation in most cases and on average. Yet, this
degradation is minor (0.5% - 1.7% in the averages
of the different setups), suggesting that the way
AE-SCL-SR employs BEs, which is useful for CD
transfer (ZR17), is less effective for CLCD.

CL-SCL and DCI, that employ pivot translation
but neither DNNs nor BEs, lag behind the PBLM-

based models and often also the AE-based mod-
els, although they outperform the latter in some
cases. Likewise, BE+CNN, where BEs are em-
ployed but without any other CLCD learning tech-
nique, is also substantially outperformed by the
PBLM-based models, but it does better than the
AE-based models with the airline source domain.

Finally, comparison to the within-language
models of the bottom table allows us to quan-
tify the gap between current CLCD models and
standard models that do not perform CD and/or
CL transfer. The averaged differences between
our best product-product model, PBLM-BE, and
Linear-ILID are 3.5% (English-German) and 6.5%
(English-French). When adapting from the air-
line domain the gap is much larger: averaged
gaps of 17% and 16.2% from the best per-
forming PBLM+BE-lazy, for English-German and
English-French, respectively. This is not a surprise
as ZR18 already demonstrated the challenging na-
ture of within-language airline-product transfer.
We consider our results to be encouraging, espe-
cially given the improvement over previous work,
and the smaller gaps in the product-product setups.

8 Conclusions

We addressed the problem of CLCD transfer in
sentiment analysis and proposed methods based
on pivot-based learning, structure-aware DNNs
and BEs. We considered full and lazy training, and
designed a lazy model that, for a given target do-
main, can be trained with unlabeled data from the
source language only and then be applied to any
target language without re-training. Our models
outperform previous models across 18 CLCD se-
tups, even when ours are trained in the lazy setup
and previous models are trained in the full setup.

In future work we wish to improve our results
for large domain gaps and for more dissimilar lan-
guages, particularly in the important lazy setup.
As our airline-product results indicate, increasing
the domain gap harms our results, and we expect
the same with more diverse language pairs.
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A Hyper-parameter Tuning

As promised in Section 6 of the main paper we
detail here our hyper-parameter tuning process.

For all models, we tune the number of pivot fea-
tures among [100, 200, 300, 400, 500]. For PBLM,
the input embedding size (when no word embed-
dings are used) is tuned among [128, 256], and the
hidden representation dimension is selected from
[128, 256, 512]. The size of the hidden layer of
AE-SCL and AE-SCL-SR is set to 300.

The dimension of our bilingual embeddings is
300, as decided by (Smith et al., 2017). For
all CNN models we use 256 filters of size 3 ×
|embedding| and perform max pooling for each of
the 256 vectors to generate a single 1 × 256 vec-
tor that is fed into the classification layer. In the

SVD step of CL-SCL we tune the output dimen-
sion among [50, 75, 100, 125, 150].

For AE-SCL and AE-SCL-SR, we follow ZR17
and represent each example fed into the sentiment
classifier with its whxnp vector. Unlike ZR17 we
do not concatenate this representation with a bag
of unigrams and bigrams representation of the ex-
ample – due to the cross-lingual nature of our task.
As in the original papers, the input features of AE-
SCL, AE-SCL-SR, CL-SCL and DCI are word un-
igrams and bigrams.

All the algorithms in the paper that involve a
CNN or a LSTM are trained with the ADAM algo-
rithm (Kingma and Ba, 2015). For this algorithm
we follow ZR18 and use the parameters described
in the original ADAM article:

• Learning rate: lr = 0.001.

• Exponential decay rate for the 1st moment es-
timates: β1 = 0.9.

• Exponential decay rate for the 2nd moment
estimates: β2 = 0.999.

• Fuzz factor: ε = 1e− 08.

• Learning rate decay over each update:
decay = 0.0.

B Code and Data

Here we provide the URLs of the code and data
we used in this paper:

• The Websis-CLS-10 dataset (Pret-
tenhofer and Stein, 2010) http:
//www.uni-weimar.de/en/media/
chairs/webis/research/corpora/
corpus-webis-cls-10/

• Bilingual word embeddings (Smith et al.,
2017): https://github.com/
Babylonpartners/fastText_
multilingual. The authors employed
their method to monolingual fastText em-
beddings (Bojanowski et al., 2017) – the
embeddings of 78 languages were aligned
with the English embeddings.

• The bilingual embeddings are based
on the fastText Facebook embeddings
(Bojanowski et al., 2017): https:
//github.com/facebookresearch/
fastText/blob/master/
pretrained-vectors.md

http://www.uni-weimar.de/en/media/chairs/webis/research/corpora/corpus-webis-cls-10/
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https://github.com/Babylonpartners/fastText_multilingual
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md


• Logistic regression classifier: http://
scikit-learn.org/stable/

• PBLM: We use the code from
the author’s github: https:
//github.com/yftah89/
PBLM-Domain-Adaptation

• AE-SCL and AE-SCL-SR: We use
the code from the author’s github:
https://github.com/yftah89/
Neural-SCLDomain-Adaptation.

• We reimplemented the CL-SCL (Pret-
tenhofer and Stein, 2011) and the DCI
(Fernández et al., 2016) models.

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://github. com/yftah89/PBLM-Domain-Adaptation
https://github. com/yftah89/PBLM-Domain-Adaptation
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https://github.com/yftah89/Neural-SCLDomain-Adaptation.

