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Abstract—Accurate electroencephalography (EEG) classification
of finger flexion imagery would endow non-invasive brain-
machine interfaces (BMIs) with a much richer control repertoire.
Traditionally, it has been assumed that non-invasive methods
lack the resolution required for success on such a fine
discrimination task. In this study, we challenged this assumption.
EEG was acquired while subjects imagined performing
individual and bimanual finger flexions. A new method of
spatiotemporal and spectral feature extraction was applied, and
multi-class support vector machine (SVM) classifiers were
trained. Predictions and probabilities then served as inputs to a
novel voting scheme, which output the system decision. The
present approach achieved a mean population (n=15) accuracy of
30.86+x1.76%, mnearly twice the chance guessing level
(16.71£1.68%) for the six-class task evaluated. Finger imagery is
thus shown to be classifiable through EEG analysis alone.
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L INTRODUCTION

Attempts have long been made to characterize the EEG
encoding of voluntary finger movement [1], and more recently,
to accurately decode and classify the activity patterns [2], [3].
Decoders have steadily progressed from sensitivity to single
finger movement onset without any specificity [4], to left
versus right hand discrimination [5], to distinguishing between
movements by four fingers on the same hand [2] and pairs of
fingers on the same hand [3] with above-chance accuracy.

Markedly, the research literature in this area is populated
exclusively by reports on brain activity associated with actual,
physical finger movements, in contrast to the BMI aim of
decoding brain activity associated with imagined movements
[6]. Most imagery research has instead focused on the
somatotopically expansive and distinct right hand, left hand,
legs and tongue [7], presumably, due to the assumption that the
poor spatial resolution of EEG limits its ability to discriminate
between signals emitted by the dense, overlapping neural
ensembles responsible for finger flexion [8], [9]. If the
challenge of accurately classifying individual finger flexion
imagery could be met however, BMIs would be endowed with
a substantially richer control command repertoire. In

recognition of this potential, the current study sought progress
in this direction.

II.  METHODS

A.  Subjects

Fifteen (15) right-handed (assessed by the Edinburgh
Handedness Inventory), female and male volunteers, 18-30
years old, with normal hearing and motor function, and without
a history of neurological or psychiatric disease, participated in
the experiment. Subjects were paid for participating, and all
procedures were approved by the institutional review board for
experiments involving human subjects (Helsinki Committee).

B. Data acquisition

A 64-channel EEG cap (Electro-Cap International) with
electrodes embedded according to the 10/20 and intermediate
electrode locations 10/10 system was positioned on the
subject's head. Each electrode well was filled with conducting
gel (Electro-Cap International). A 9-mm disc electrode placed
on the middle of the chin served as reference, and an electrode
clipped on the left earlobe served as ground. Three electrodes
recorded eye movements (EOG); two placed bilaterally near
the outer canthus of each eye, and one below the right eye. To
record electromyographic (EMG) activity, bipolar surface
electrodes (Electro-Cap International) were positioned atop the
thenar and hypothenar muscles of each hand, and filled with
conducting gel. The cap-mounted and bipolar electrodes were
connected to an EEG recording system (MicroMed). Potentials
from all channels were amplified at 0.15-134.4 Hz, digitized
with a 16-bit A/D converter, and sampled at 512 Hz. The
impedance of each electrode was brought below 5 kOhm
before the experiment began, and maintained at that level for
the experiment’s duration.

C. Setup

Subjects sat upright in an electrically shielded and
acoustically isolated room, wearing headphones, with fingers
on a response device resting in their lap. The custom-built
device contained four buttons, for the thumb and fifth finger of
each hand. Subjects were instructed to keep their eyes open
and to avoid making any movements.



D. Paradigm

1) Stimuli: The experiment consisted of blocks in which
auditory stimuli, delivered in a pseudo-random order with
pseudo-random timing, cued subjects to imagine pressing
certain buttons. Each stimulus had a 50 ms, linear volume rise
time, 400 ms sustained volume, and 50 ms fall time, providing
for easy perception. Pure tones (250 Hz and 1000 Hz) were
used, whereby the lower tone cued imagined flexion of the
thumb, and the higher tone cued imagined flexion of the fifth
finger. Stimuli were delivered either to the left ear, right ear,
or to both ears simultaneously. The lateralization of each
stimulus cued the hand for imagining the flexion, with
binaural tones cuing bimanual flexion imagery. A complex
sound, delivered binaurally, cued the release of each flexion.

2) Timing: The duration of time separating ‘press’ and
‘release’ cues was pseudo-randomly set to either 1000, 1500,
or 2500 ms, such that the experiment contained equal
instances of press imagery of each duration. A rest period
randomized between 1500-3000 ms intervened between press-
release cycles (Figure 1). All stimuli were delivered using
Presentation software (Neurobehavioral Systems) and
recorded at a sampling rate of 40 kHz.

3) Practice: Subjects practiced finger flexion imagery
while maintaining relaxed muscles (i.e. silent EMG) by
viewing their EMG data in real-time as they imagined pressing
and releasing response buttons, individually and bimanually.
After a subject proved adept at maintaining silent EMG during
motor imagery performance, the main portion of the
experiment began

4) Blocks: The experiment proceeded through alternating
blocks of cued imagined single-finger flexions, and cued
imagined bimanual flexions. Single-finger blocks contained
120 cues in total (30 for each finger) while bimanual blocks
contained 60 cues (30 for each bimanual pair). Blocks lasted
5-10 minutes. Dependent upon the subject's self-reported level
of fatigue, the experiment contained 3-5 iterations, yielding a
balanced data set of, on average, more than 100 events from
each of the six finger imagery classes (4 single finger, 2
bimanual) per subject.

III. DATA PREPROCESSING

Preprocessing was performed to ensure that brain activity
alone was the input for feature extraction and classification. An
available toolbox [10] was used to implement the cleaning
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Figure 1. Experimental time course. Sample raw EEG and EMG from
single channels aligned below a schematic outlining trial progression.

procedure, which began with segmentation of the continuous
EEG into epochs (-1000 ms to +2000 ms relative to cue),
removal of DC bias, and second-order infinite impulse
response (IIR) Butterworth filtering (0.1-24 Hz, 6 dB/octave
slopes). Automatic voltage (+75 uV) and spectral thresholding
(0-2 Hz at £50 dB, 20-40 Hz at £100-£25 dB) was employed to
guide further visual inspection, and manual removal of trials
irreparably affected by movement artifacts or miscellaneous
electrical noise. Independent Component Analysis (ICA) [11]
was applied to isolate artifact-contaminated components.
Evaluation of the components was aided by the ADJUST
algorithm [12]. Components reflecting non-brain activity were
removed. Cleaned data from the 61 scalp electrodes were
extracted, and segmented into 0-1000 ms (relative to cue)
epochs.

IV. FEATURE EXTRACTION

A novel feature extraction method, inspired by domain-
specific knowledge of the physiological encoding of imagined
finger flexion, was applied. The following sections describe the
new “Spiral Covawave” method, which is comprised of a
multiple step process by which EEG data is rearranged,
covariance matrices in time and space are computed, a wavelet
decomposition is performed, data is reconstructed through a
discrete filter bank, and outputs from each step are normalized
to enable effective processing of the entire feature set within a
uniform classification framework.

A. Spiral montage

Maximal smoothness across the sample space was a
guiding objective. As channel-wise correlations are highest at
nearest neighbor positions, the arbitrary ordering of data as
acquired by the EEG system did not meet the smoothness
objective, and so a new electrode arrangement was devised
according to a heuristically approximated, shortest-path
Hamiltonian solution.

The approximation began by defining the start position at
one of the mastoid electrodes, being one of the two most
remote relative to the remainder of the montage’s spatial
clusters. Next, a systematic spiral around the caudal-most
section of the transverse plane was defined. Once every
electrode in this first level had been passed, the spiral was
elevated step-wise to the nearest electrode of the next level
closer to the vertex. The result was a spiral montage that
greatly improved data smoothness (Figure 2). Prior to feature
extraction, data from all epochs were rearranged according to
the spiral montage.

Figure 2. Spiral montage rearrangement. X-axis: channels, Y-axis:
samples. Example data from a single epoch, as acquired through the
default montage (left) and after rearrangement (right).
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B.  Covariance features

Both the temporal covariance matrix and the spatial
covariance matrix were computed through the empirical
estimator

X'x
Cov =
N-1, €]
where X =Xi when computing covariance in time,
X,ERYC X = : . .
where i , and sPwhen computing covariance in

CxN
space, where X, €T X corresponds to a single trial of data,

where N is samples and C is channels.

C. Wavelet filter bank features
The wavelet transform, a convolution of the signal, X(£),

with an elementary function,ww(t), was performed. Formally
defined as the following inner product:

W, X(s,7) = (x(0) 1y, (1)) @

where ¥s() are scaled and translated versions of the

mother wavelet function y(z), where
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such that s and 7 respectively represent the scaling and

translation parameters [13]. Scales and translations where

defined discretely as the set
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A multilevel, one-dimensional wavelet decomposition was
computed with j initialized to 7, and the wavelet function (1/})
defined as a biorthogonal wavelet with filters of 5. The
transform was implemented in Matlab (The Mathworks), using
Mallat's fast decomposition and reconstruction algorithm [14].
Data was then reconstructed through eight discrete frequency
banks (7 details and the approximation).

D. Normalization

Each category of extracted features was normalized
independently according to a common procedure, beginning
with calculation of the feature’s z-score through

Zfr=(Y_,u)/O', (5)

where Y is the unrolled feature, ( is the feature’s
population mean, and O the feature’s standard deviation. The
normalized feature vector is then computed by
Z,
max‘Zf,‘ ) (6)

After normalization, all feature vectors were concatenated,
and labeled vectors were filed into a feature matrix per subject.

.

E. Windowing

The Spiral Covawave method was applied to 32 windows
of data derived from each 1000ms epoch. The minimum
window was 80 samples (154.3ms), the maximum 400 samples
(779.3ms), with sliding distances of 40 samples (77.15ms).

V.  CLASSIFICATION
A. Phase I. Learning and Cross-Validation

A one-versus-one multiclass Support Vector Machine
(SVM) with a linear kernel was employed using an available
software package [15]. As our dataset contained 6 classes, a
total of 15 binary classifiers, each trained to distinguish
between a pair of classes, were constructed. The Max-Wins
decision rule determined the system’s output, whereby each
new example was classified by every binary classifier, and the
class that received the highest number of votes was selected.
In case of ties, assignment was made to the class with the
lowest index.

For every subject, feature matrices were processed
through a 10-fold cross-validation procedure. Validation folds
were generated through random sampling, using time
information to seed the random number generator. To train
and test the primary-level SVMs, at each fold 80% of the data
was used for training, 10% for tuning the hyperparameter C,
and the remaining 10% were used as an unseen test set. Fold
indices, once generated for cross-validation testing of features
corresponding to the first window, were kept constant for the
remaining thirty-one windows. Posterior probability estimates
were also computed, by mapping distance-from-hyperplane
values to prediction accuracies through the training of a
secondary-level sigmoid function [16].

B.  Phase II. Hierarchical Voting

A vpersistent challenge to BMI technology is adapting to
inter-subject variability. One technique for doing so is the
selection of personalized time windows for feature extraction
that isolate the most discriminative information per subject.
Here, personalized window selection was automated, with the
three windows corresponding to the highest accuracies during
hyperparameter tuning chosen as inputs for the voting scheme.

During testing, the three selected windows’ classifiers
output their predictions along with posterior probability
estimates into a decision function that made the final
classification according to the rule,

P, if 14, =1B, =

0. if 14, =1C, =0 @
p=l¢, if 1B, =1C, =/
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& if 14, =1B, =1C,

where [Avs1B,.1Cy are the predictions (i.e. votes) of the
first level SVM classifiers for windows A, B, and C



respectively; and # QX are the labels predicted. Hence, if at
least two classifiers agree, their prediction becomes the
system’s decision p. In the case that all first level classifiers
disagree, the decision & signals the system to evaluate
probability estimates from the secondary-level sigmoid
function. Canvassing of the secondary level information is
crude, with a strict winner-take-all rule presiding:

9, if 2A,>2B, &2C, and 1A, =9
D=1¢, if 2B,>2A,&2C, and 1B, =
I, if 2C, >2A, & 2B, and 1C, =1 8)

where 24r:2B,.2C; are the second-order probabilities
associated with the first-level predictions for window A, B, and
C respectively; and # Ol are the labels predicted at the first
level. The empirical guessing level was estimated by random
permutation of labels during testing.

VI. RESULTS

The mean population accuracy for the six-class task was
30.86 = 1.76%; nearly double the guess level of 16.71 = 1.68%.
The best performance was for subject 2, at 36.2 = 6.75%, the
worst for subject 3, at 22.83 = 4.13%. The voting scheme
obtained the highest accuracy in comparison to any single
window classifier for 9 of the 15 subjects, with a mean
improvement of 1.44 = 0.89% over the best single classifier.

VII. DISCUSSION

This study aimed to use EEG data exclusively to classify
imagined finger flexions. A 6-class task was designed that
challenged a classifier to distinguish between imagery of
individual as well as bimanual finger movements. High
accuracy was obtained by deploying a novel feature extraction
and voting scheme, achieving a population mean accuracy of
1.85 times chance levels, outperforming classifiers previously
reported in the literature on EEG associated with actual
movements, such as [2] (1.71 times chance) and [3] (1.52 times
chance). It is worth noting that the classifier performed above
chance for every subject (n=15), a non-trivial accomplishment
given the challenge of the 6-class task. The classifier was also
efficient: once trained, it classified new examples within tens of
milliseconds. Furthermore, and significantly, the results
reported here pertain to purely imagined finger movements
decoded from EEG - the first such report in the literature to the
best of the authors” knowledge.

While the hierarchical voting scheme did achieve higher
accuracies across the population than any single classifier, it
should be observed that its improvement over the best single
window classifier was slight compared to the great leap in
accuracies that would be expected if the three windows each
contained discriminative, non-redundant information. It is
therefore fair to regard the accuracies obtained here as
approaching the apex of what is achievable given this feature
set, which itself represents an extensive capture of
physiological-relevant information. In the future, incorporating
non-linear feature induction through deep learning, or adopting

a graph-based approach that integrates similarity measures and
clustering, may potentially boost classifier performance further.

VIII. CONCLUSION

The new Spiral Covawave method, which extracted the
spatiotemporal and spectral features of brain activity associated
with imagined finger flexion, was effective, and complemented
by a hierarchical voting scheme that generated accurate
predictions. Finger movement imagery, commonly assumed to
be beyond EEG’s resolution, is thus found to be decodable.
With more attention from the non-invasive BMI community,
finger imagery classification can be improved and applied to
significantly expand the control command repertoire.
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