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Abstract—Accurate electroencephalography (EEG) classification 
of finger flexion imagery would endow non-invasive brain-
machine interfaces (BMIs) with a much richer control repertoire. 
Traditionally, it has been assumed that non-invasive methods 
lack the resolution required for success on such a fine 
discrimination task. In this study, we challenged this assumption. 
EEG was acquired while subjects imagined performing 
individual and bimanual finger flexions. A new method of 
spatiotemporal and spectral feature extraction was applied, and 
multi-class support vector machine (SVM) classifiers were 
trained. Predictions and probabilities then served as inputs to a 
novel voting scheme, which output the system decision. The 
present approach achieved a mean population (n=15) accuracy of 
30.86±1.76%, nearly twice the chance guessing level 
(16.71±1.68%) for the six-class task evaluated. Finger imagery is 
thus shown to be classifiable through EEG analysis alone. 
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I.  INTRODUCTION 
Attempts have long been made to characterize the EEG 

encoding of voluntary finger movement [1], and more recently, 
to accurately decode and classify the activity patterns [2], [3]. 
Decoders have steadily progressed from sensitivity to single 
finger movement onset without any specificity [4], to left 
versus right hand discrimination [5], to distinguishing between 
movements by four fingers on the same hand [2] and pairs of 
fingers on the same hand [3] with above-chance accuracy.  

Markedly, the research literature in this area is populated 
exclusively by reports on brain activity associated with actual, 
physical finger movements, in contrast to the BMI aim of 
decoding brain activity associated with imagined movements 
[6]. Most imagery research has instead focused on the 
somatotopically expansive and distinct right hand, left hand, 
legs and tongue [7], presumably, due to the assumption that the 
poor spatial resolution of EEG limits its ability to discriminate 
between signals emitted by the dense, overlapping neural 
ensembles responsible for finger flexion [8], [9]. If the 
challenge of accurately classifying individual finger flexion 
imagery could be met however, BMIs would be endowed with 
a substantially richer control command repertoire. In 

recognition of this potential, the current study sought progress 
in this direction. 

II. METHODS 

A. Subjects 
Fifteen (15) right-handed (assessed by the Edinburgh 

Handedness Inventory), female and male volunteers, 18-30 
years old, with normal hearing and motor function, and without 
a history of neurological or psychiatric disease, participated in 
the experiment. Subjects were paid for participating, and all 
procedures were approved by the institutional review board for 
experiments involving human subjects (Helsinki Committee). 

B. Data acquisition 
A 64-channel EEG cap (Electro-Cap International) with 

electrodes embedded according to the 10/20 and intermediate 
electrode locations 10/10 system was positioned on the 
subject's head. Each electrode well was filled with conducting 
gel (Electro-Cap International). A 9-mm disc electrode placed 
on the middle of the chin served as reference, and an electrode 
clipped on the left earlobe served as ground. Three electrodes 
recorded eye movements (EOG); two placed bilaterally near 
the outer canthus of each eye, and one below the right eye. To 
record electromyographic (EMG) activity, bipolar surface 
electrodes (Electro-Cap International) were positioned atop the 
thenar and hypothenar muscles of each hand, and filled with 
conducting gel. The cap-mounted and bipolar electrodes were 
connected to an EEG recording system (MicroMed).  Potentials 
from all channels were amplified at 0.15-134.4 Hz, digitized 
with a 16-bit A/D converter, and sampled at 512 Hz.  The 
impedance of each electrode was brought below 5 kOhm 
before the experiment began, and maintained at that level for 
the experiment’s duration. 

C. Setup 
Subjects sat upright in an electrically shielded and 

acoustically isolated room, wearing headphones, with fingers 
on a response device resting in their lap. The custom-built 
device contained four buttons, for the thumb and fifth finger of 
each hand.  Subjects were instructed to keep their eyes open 
and to avoid making any movements. 



 
Figure 1. Experimental time course. Sample raw EEG and EMG from 
single channels aligned below a schematic outlining trial progression. 

 

 
Figure 2. Spiral montage rearrangement. X-axis: channels, Y-axis: 
samples. Example data from a single epoch, as acquired through the 
default montage (left) and after rearrangement (right). 
 
 

D. Paradigm 
1) Stimuli: The experiment consisted of blocks in which 

auditory stimuli, delivered in a pseudo-random order with 
pseudo-random timing, cued subjects to imagine pressing 
certain buttons.  Each stimulus had a 50 ms, linear volume rise 
time, 400 ms sustained volume, and 50 ms fall time, providing 
for easy perception. Pure tones (250 Hz and 1000 Hz) were 
used, whereby the lower tone cued imagined flexion of the 
thumb, and the higher tone cued imagined flexion of the fifth 
finger. Stimuli were delivered either to the left ear, right ear, 
or to both ears simultaneously. The lateralization of each 
stimulus cued the hand for imagining the flexion, with 
binaural tones cuing bimanual flexion imagery. A complex 
sound, delivered binaurally, cued the release of each flexion. 

2) Timing: The duration of time separating ‘press’ and 
‘release’ cues was pseudo-randomly set to either 1000, 1500, 
or 2500 ms, such that the experiment contained equal 
instances of press imagery of each duration. A rest period 
randomized between 1500-3000 ms intervened between press-
release cycles (Figure 1). All stimuli were delivered using 
Presentation software (Neurobehavioral Systems) and 
recorded at a sampling rate of 40 kHz. 

3) Practice: Subjects practiced finger flexion imagery 
while maintaining relaxed muscles (i.e. silent EMG) by 
viewing their EMG data in real-time as they imagined pressing 
and releasing response buttons, individually and bimanually. 
After a subject proved adept at maintaining silent EMG during 
motor imagery performance, the main portion of the 
experiment began 

4) Blocks: The experiment proceeded through alternating 
blocks of cued imagined single-finger flexions, and cued 
imagined bimanual flexions. Single-finger blocks contained 
120 cues in total (30 for each finger) while bimanual blocks 
contained 60 cues (30 for each bimanual pair).  Blocks lasted 
5-10 minutes. Dependent upon the subject's self-reported level 
of fatigue, the experiment contained 3-5 iterations, yielding a 
balanced data set of, on average, more than 100 events from 
each of the six finger imagery classes (4 single finger, 2 
bimanual) per subject. 

III. DATA PREPROCESSING 
Preprocessing was performed to ensure that brain activity 

alone was the input for feature extraction and classification. An 
available toolbox [10] was used to implement the cleaning 

procedure, which began with segmentation of the continuous 
EEG into epochs (-1000 ms to +2000 ms relative to cue), 
removal of DC bias, and second-order infinite impulse 
response (IIR) Butterworth filtering (0.1–24 Hz, 6 dB/octave 
slopes). Automatic voltage (±75 uV) and spectral thresholding 
(0-2 Hz at ±50 dB, 20-40 Hz at ±100-±25 dB) was employed to 
guide further visual inspection, and manual removal of trials 
irreparably affected by movement artifacts or miscellaneous 
electrical noise. Independent Component Analysis (ICA) [11] 
was applied to isolate artifact-contaminated components. 
Evaluation of the components was aided by the ADJUST 
algorithm [12]. Components reflecting non-brain activity were 
removed. Cleaned data from the 61 scalp electrodes were 
extracted, and segmented into 0-1000 ms (relative to cue) 
epochs. 

IV. FEATURE EXTRACTION 
A novel feature extraction method, inspired by domain-

specific knowledge of the physiological encoding of imagined 
finger flexion, was applied. The following sections describe the 
new “Spiral Covawave” method, which is comprised of a 
multiple step process by which EEG data is rearranged, 
covariance matrices in time and space are computed, a wavelet 
decomposition is performed, data is reconstructed through a 
discrete filter bank, and outputs from each step are normalized 
to enable effective processing of the entire feature set within a 
uniform classification framework. 

A. Spiral montage 
Maximal smoothness across the sample space was a 

guiding objective. As channel-wise correlations are highest at 
nearest neighbor positions, the arbitrary ordering of data as 
acquired by the EEG system did not meet the smoothness 
objective, and so a new electrode arrangement was devised 
according to a heuristically approximated, shortest-path 
Hamiltonian solution. 

The approximation began by defining the start position at 
one of the mastoid electrodes, being one of the two most 
remote relative to the remainder of the montage’s spatial 
clusters. Next, a systematic spiral around the caudal-most 
section of the transverse plane was defined. Once every 
electrode in this first level had been passed, the spiral was 
elevated step-wise to the nearest electrode of the next level 
closer to the vertex. The result was a spiral montage that 
greatly improved data smoothness (Figure 2). Prior to feature 
extraction, data from all epochs were rearranged according to 
the spiral montage. 
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B. Covariance features 
Both the temporal covariance matrix and the spatial 

covariance matrix were computed through the empirical 
estimator  

,          (1) 

where  when computing covariance in time, 
where , and when computing covariance in 
space, where . corresponds to a single trial of data, 
where N is samples and C is channels. 

C. Wavelet filter bank features 
The wavelet transform, a convolution of the signal, , 

with an elementary function, , was performed. Formally 
defined as the following inner product: 

€ 

WψX(s,τ) = x(t) |ψs,τ (t) ,  (2) 

where  are scaled and translated versions of the 
mother wavelet function ψ(t), where 

,              (3) 

such that s and τ respectively represent the scaling and 
translation parameters [13]. Scales and translations where 
defined discretely as the set 

 with parameters  .            (4) 

A multilevel, one-dimensional wavelet decomposition was 
computed with  initialized to 7, and the wavelet function ( ) 
defined as a biorthogonal wavelet with filters of 5. The 
transform was implemented in Matlab (The Mathworks), using 
Mallat's fast decomposition and reconstruction algorithm [14]. 
Data was then reconstructed through eight discrete frequency 
banks (7 details and the approximation). 

D. Normalization 
Each category of extracted features was normalized 

independently according to a common procedure, beginning 
with calculation of the feature’s z-score through 

,          (5) 

where  is the unrolled feature, is the feature’s 
population mean, and  the feature’s standard deviation. The 
normalized feature vector is then computed by 

.          (6) 

After normalization, all feature vectors were concatenated, 
and labeled vectors were filed into a feature matrix per subject. 

E. Windowing 
The Spiral Covawave method was applied to 32 windows 

of data derived from each 1000ms epoch. The minimum 
window was 80 samples (154.3ms), the maximum 400 samples 
(779.3ms), with sliding distances of 40 samples (77.15ms).  

V. CLASSIFICATION 

A. Phase I. Learning and Cross-Validation 

A one-versus-one multiclass Support Vector Machine 
(SVM) with a linear kernel was employed using an available 
software package [15].  As our dataset contained 6 classes, a 
total of 15 binary classifiers, each trained to distinguish 
between a pair of classes, were constructed. The Max-Wins 
decision rule determined the system’s output, whereby each 
new example was classified by every binary classifier, and the 
class that received the highest number of votes was selected. 
In case of ties, assignment was made to the class with the 
lowest index.  

 For every subject, feature matrices were processed 
through a 10-fold cross-validation procedure. Validation folds 
were generated through random sampling, using time 
information to seed the random number generator.  To train 
and test the primary-level SVMs, at each fold 80% of the data 
was used for training, 10% for tuning the hyperparameter C, 
and the remaining 10% were used as an unseen test set. Fold 
indices, once generated for cross-validation testing of features 
corresponding to the first window, were kept constant for the 
remaining thirty-one windows. Posterior probability estimates 
were also computed, by mapping distance-from-hyperplane 
values to prediction accuracies through the training of a 
secondary-level sigmoid function [16]. 

B. Phase II. Hierarchical Voting 
A persistent challenge to BMI technology is adapting to 

inter-subject variability. One technique for doing so is the 
selection of personalized time windows for feature extraction 
that isolate the most discriminative information per subject. 
Here, personalized window selection was automated, with the 
three windows corresponding to the highest accuracies during 
hyperparameter tuning chosen as inputs for the voting scheme. 

During testing, the three selected windows’ classifiers 
output their predictions along with posterior probability 
estimates into a decision function that made the final 
classification according to the rule, 

 

 ,                     (7) 

 
where  are the predictions (i.e. votes) of the 

first level SVM classifiers for windows A, B, and C 



respectively; and  are the labels predicted. Hence, if at 
least two classifiers agree, their prediction becomes the 
system’s decision . In the case that all first level classifiers 
disagree, the decision  signals the system to evaluate 
probability estimates from the secondary-level sigmoid 
function. Canvassing of the secondary level information is 
crude, with a strict winner-take-all rule presiding: 

 

         (8) 
 
where  are the second-order probabilities 

associated with the first-level predictions for window A, B, and 
C respectively; and  are the labels predicted at the first 
level. The empirical guessing level was estimated by random 
permutation of labels during testing.  

VI. RESULTS  
The mean population accuracy for the six-class task was 

30.86 ± 1.76%; nearly double the guess level of 16.71 ± 1.68%. 
The best performance was for subject 2, at 36.2 ± 6.75%, the 
worst for subject 3, at 22.83 ± 4.13%. The voting scheme 
obtained the highest accuracy in comparison to any single 
window classifier for 9 of the 15 subjects, with a mean 
improvement of 1.44 ± 0.89% over the best single classifier. 

VII. DISCUSSION  
This study aimed to use EEG data exclusively to classify 

imagined finger flexions. A 6-class task was designed that 
challenged a classifier to distinguish between imagery of 
individual as well as bimanual finger movements.  High 
accuracy was obtained by deploying a novel feature extraction 
and voting scheme, achieving a population mean accuracy of 
1.85 times chance levels, outperforming classifiers previously 
reported in the literature on EEG associated with actual 
movements, such as [2] (1.71 times chance) and [3] (1.52 times 
chance). It is worth noting that the classifier performed above 
chance for every subject (n=15), a non-trivial accomplishment 
given the challenge of the 6-class task. The classifier was also 
efficient: once trained, it classified new examples within tens of 
milliseconds. Furthermore, and significantly, the results 
reported here pertain to purely imagined finger movements 
decoded from EEG - the first such report in the literature to the 
best of the authors’ knowledge.  

While the hierarchical voting scheme did achieve higher 
accuracies across the population than any single classifier, it 
should be observed that its improvement over the best single 
window classifier was slight compared to the great leap in 
accuracies that would be expected if the three windows each 
contained discriminative, non-redundant information.  It is 
therefore fair to regard the accuracies obtained here as 
approaching the apex of what is achievable given this feature 
set, which itself represents an extensive capture of 
physiological-relevant information. In the future, incorporating 
non-linear feature induction through deep learning, or adopting 

a graph-based approach that integrates similarity measures and 
clustering, may potentially boost classifier performance further.  

VIII. CONCLUSION 
The new Spiral Covawave method, which extracted the 

spatiotemporal and spectral features of brain activity associated 
with imagined finger flexion, was effective, and complemented 
by a hierarchical voting scheme that generated accurate 
predictions.  Finger movement imagery, commonly assumed to 
be beyond EEG’s resolution, is thus found to be decodable. 
With more attention from the non-invasive BMI community, 
finger imagery classification can be improved and applied to 
significantly expand the control command repertoire. 
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