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Abstract

Neural dependency parsing has proven very
effective, achieving state-of-the-art results
on numerous domains and languages. Un-
fortunately, it requires large amounts of la-
beled data, that is costly and laborious to
create. In this paper we propose a self-
training algorithm that alleviates this anno-
tation bottleneck by training a parser on its
own output. Our Deep Contextualized Self-
training (DCST) algorithm utilizes repre-
sentation models trained on sequence label-
ing tasks that are derived from the parser’s
output when applied to unlabeled data, and
integrates these models with the base parser
through a gating mechanism. We conduct
experiments across multiple languages, both
in low resource in-domain and in cross-
domain setups, and demonstrate that DCST
substantially outperforms traditional self-
training as well as recent semi-supervised
training methods. 1

1 Introduction

Deep Neural Networks (DNNs) have improved
the state-of-the-art in a variety of NLP tasks.
These include dependency parsing (Dozat and
Manning, 2017), semantic parsing (Hershcovich
et al., 2017), named entity recognition (Yadav and
Bethard, 2018), POS tagging (Plank and Agić,
2018), and machine translation (Vaswani et al.,
2017), among others.

Unfortunately, DNNs rely on in-domain labeled
training data, which is costly and laborious to
achieve. This annotation bottleneck limits the ap-
plicability of NLP technology to a small num-
ber of languages and domains. It is hence not
a surprise that substantial recent research efforts
have been devoted to DNN training based on both

1Our code is publicly available at https://github.
com/rotmanguy/DCST.

labeled and unlabeled data, which is typically
widely available (§ 2).

A prominent technique for training machine
learning models on labeled and unlabeled data is
self-training (Yarowsky, 1995; Abney, 2004). In
this technique, after the model is trained on a la-
beled example set it is applied to another set of un-
labeled examples, and the automatically and man-
ually labeled sets are then combined in order to re-
train the model – a process that is sometimes per-
formed iteratively. While self-training has shown
useful for a variety of NLP tasks, its success for
deep learning models has been quite limited (§ 2).

Our goal is to develop a self-training algorithm
that can substantially enhance DNN models in
cases where labeled training data is scarce. Par-
ticularly, we are focusing (§ 5) on the lightly su-
pervised setup where only a small in-domain la-
beled dataset is available, and on the domain adap-
tation setup where the labeled dataset may be large
but it comes from a different domain than the
one to which the model is meant to be applied.
Our focus task is dependency parsing, which is
essential for many NLP tasks (Levy and Gold-
berg, 2014; Angeli et al., 2015; Toutanova et al.,
2016; Hadiwinoto and Ng, 2017; Marcheggiani
et al., 2017), but where self-training has typi-
cally failed (§ 2). Moreover, neural dependency
parsers (Kiperwasser and Goldberg, 2016; Dozat
and Manning, 2017) substantially outperform their
linear predecessors, which makes the development
of self-training methods that can enhance these
parsers in low-resource setups a crucial challenge.

We present a novel self-training method, suit-
able for neural dependency parsing. Our algo-
rithm (§ 4) follows recent work that has demon-
strated the power of pre-training for improving
DNN models in NLP (Peters et al., 2018; Devlin
et al., 2019) and particularly for domain adaptation
(Ziser and Reichart, 2018). However, while in pre-
vious work a representation model, also known as

https://github.com/rotmanguy/DCST
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a contextualized embedding model, is trained on a
language modeling related task, our algorithm uti-
lizes a representation model that is trained on se-
quence prediction tasks derived from the parser’s
output. Our representation model and the base
parser are integrated into a new model through a
gating mechanism, and the resulting parser is then
trained on the manually labeled data.

We experiment (§ 6,7) with a large variety of
lightly-supervised and domain adaptation depen-
dency parsing setups. For the lightly-supervised
case we consider 17 setups: 7 in different English
domains and 10 in other languages. For the do-
main adaptation case we consider 16 setups: 6 in
different English domains and 10 in 5 other lan-
guages. Our Deep Contextualized Self-training
(DCST) algorithm demonstrates substantial per-
formance gains over a variety of baselines, includ-
ing traditional self-training and the recent cross-
view training approach (CVT) (Clark et al., 2018)
that was designed for semi-supervised learning
with DNNs.

2 Previous Work

Self-training in NLP Self-training has shown
useful for various NLP tasks, including word
sense disambiguation (Mihalcea, 2004; Yarowsky,
1995), bilingual lexicon induction (Artetxe et al.,
2018), neural machine translation (Imamura and
Sumita, 2018), semantic parsing (Goldwasser
et al., 2011) and sentiment analysis (He and
Zhou, 2011). For constituency parsing, self-
training has shown to improve linear parsers both
when large training data is available (McClosky
et al., 2006a,b), and in the lightly supervised and
the cross-domain setups (Reichart and Rappoport,
2007). While several authors failed to demon-
strate the efficacy of self-training for dependency
parsing (e.g. (Rush et al., 2012)), recently it was
found useful for neural dependency parsing in
fully supervised multilingual settings (Rybak and
Wróblewska, 2018).

The impact of self-training on DNNs is less
researched compared to the extensive investiga-
tion with linear models. Recently, Ruder and
Plank (2018) evaluated the impact of self-training
and the closely related tri-training method (Zhou
and Li, 2005; Søgaard, 2010) on DNNs for part-
of-speech (POS) tagging and sentiment analysis.
They found self-training to be effective for the sen-
timent classification task, but it failed to improve

their BiLSTM POS tagging architecture. Tri-
training has shown effective for both the classifica-
tion and the sequence tagging task, and in Vinyals
et al. (2015) it has shown useful for neural con-
stituency parsing . This is in-line with Steedman
et al. (2003) that demonstrated the effectiveness of
the closely related co-training method (Blum and
Mitchell, 1998) for linear constituency parsers.

Lastly, Clark et al. (2018) presented the Cross-
view Training (CVT) algorithm, a variant of self-
training that employs unsupervised representation
learning. CVT differs from classical self-training
in the way it exploits the unlabeled data: it trains
auxiliary models on restricted views of the input
to match the predictions of the full model that ob-
serves the whole input.

We propose a self-training algorithm based on
deep contextualized embeddings, where the em-
bedding model is trained on sequence tagging
tasks that are derived from the parser’s output on
unlabeled data. In extensive lightly supervised and
cross-domain experiments with a neural depen-
dency parser, we show that our DCST algorithm
outperforms traditional self-training and CVT.

Pre-training and Deep Contextualized Embed-
ding Our DCST algorithm is related to recent
work on DNN pre-training. In this line, a DNN
is first trained on large amounts of unlabeled data
and is then used as the word embedding layer of a
more complex model that is trained on labeled data
to perform an NLP task. Typically, only the upper,
task specific, layers of the final model are trained
on the labeled data, while the parameters of the
pre-trained embedding network are kept fixed.

The most common pre-training task is language
modeling or a closely related variant (McCann
et al., 2017; Peters et al., 2018; Devlin et al., 2019;
Ziser and Reichart, 2018). The outputs of the pre-
trained DNN are often referred to as contextual-
ized word embeddings, as these DNNs typically
generate a vector embedding for each input word,
which takes its context into account. Pre-training
has led to performance gains in many NLP tasks.

Recently, Che et al. (2018) incorporated ELMo
embeddings (Peters et al., 2018) into a neural de-
pendency parser and reported improvements over
a range of Universal Dependency (UD) (McDon-
ald et al., 2013; Nivre et al., 2016, 2018) languages
in the fully supervised setup. In this paper we fo-
cus on the lightly supervised and domain adapta-
tion setups, trying to compensate for the lack of



labeled data by exploiting automatically labeled
trees generated by the base parser for unlabeled
sentences.

Our main experiments (§7) are with models that
utilize non-contextualized word embeddings. We
believe this is a more practical setup when con-
sidering multiple languages and domains. Indeed,
Che et al. (2018), who trained their ELMo model
on the unlabeled data of the CoNLL 2018 shared
task, reported that "The training of ELMo on one
language takes roughly 3 days on an NVIDIA
P100 GPU.". However, we also demonstrate the
power of our models when ELMo embeddings are
available (§8), in order to establish the added im-
pact of deep contextualized self-training on top of
contextualized word embeddings.

Lightly Supervised Learning and Domain
Adaptation for Dependency Parsing Finally,
we briefly survey earlier attempts to learn parsers
in setups where labeled data from the domain to
which the parser is meant to be applied is scarce.
We exclude from this brief survey literature that
has already been mentioned above.

Some notable attempts are: exploiting short
dependencies in the parser’s output when ap-
plied to large target domain unlabeled data (Chen
et al., 2008), adding inter-sentence consistency
constraints at test time (Rush et al., 2012), select-
ing effective training domains (Plank and Van No-
ord, 2011), exploiting parsers trained on different
domains through a mixture of experts (McClosky
et al., 2010), embedding features in a vector space
(Chen et al., 2014), and Bayesian averaging of a
range of parser parameters (Shareghi et al., 2019).

Recently, Sato et al. (2017) presented an adver-
sarial model for cross-domain dependency parsing
in which the encoders of the source and the target
domains are integrated through a gating mecha-
nism. Their approach requires target domain la-
beled data for parser training and hence it can-
not be applied in the unsupervised domain adapta-
tion setup we explore (§ 5). We adopt their gating
mechanism to our model and extend it to integrate
more than two encoders into a final model.

3 Background: The BiAFFINE Parser

The parser we utilize in our experiments is the
BiAFFINE parser (Dozat and Manning, 2017).
Since the structure of the parser affects our DCST
algorithm, we briefly describe it here.

A sketch of the parser architecture is provided
in Figure 1. The input to the parser is a sen-
tence (x1, x2, . . . , xm) of length m. An embed-
ding layer embeds the words into fixed-size vec-
tors (w1, w2, . . . , wm). Additionally, character-
level embeddings ckt retrieved from a CNN (Zhang
et al., 2015), and a POS embedding pt, are con-
catenated to each word vector. At time t, the fi-
nal input vector ft = [wt; ct; pt] is then fed into a
BiLSTM encoder Eparser which outputs a hidden
representation ht:

ht = Eparser(ft). (1)

Given the hidden representations of the i’th
word hi and the j’th word hj , the decoder out-
puts a score si,j , indicating the model belief that
the latter should be the head of the former in the
dependency tree. More formally,

si,j = rTi Urj + wT
j rj , (2)

where ri = MLP (hi), and U and wj are learned
parameters (MLP is a multi-layered perceptron).

Similarly, a score li,j,k is calculated for the k’th
possible dependency label of the arc (i, j):

li,j,k = qTi U
′
kqj + w

′T
k [qi; qj ] + b

′
k, (3)

where qi = MLP
′
(hi), and U

′
k, w

′
k, and b

′
k

are learned parameters. During training the model
aims to maximize the probability of the gold tree:

m∑
i=1

p(yi|xi, θ) + p(y′i|xi, yi, θ), (4)

where yi is the head of xi, y′i is the label of the
arc (xi, yi), θ represents the model’s parameters,
p(yi|xi, θ) ∝ exp(sxi,yi), and p(y′i|xi, yi, θ) ∝
exp(lxi,yi,y′i

). At test time, the parser runs the
MST algorithm (Edmonds, 1967) on the arc scores
in order to generate a valid tree.

4 Deep Contextualized Self-training

In this section we present our DCST algorithm for
dependency parsing (Algorithm 1). As a semi-
supervised learning algorithm, DCST assumes a
labeled dataset L = {(xli, yli)}

|L|
i=1, consisting of

sentences and their gold dependency trees, and
an unlabeled dataset U = {xui }

|U|
i=1, consisting of

sentences only.
We start (Algorithm 1, step 1) by training the

base parser (the BiAFFINE parser in our case) on



Figure 1: The BiAFFINE parser.

Algorithm 1 Deep Contextualized Self-training (DCST)
Input: Labeled data L, Unlabeled data U
Algorithm:

1. Train the base parser on L (§ 3).

2. Parse the sentences of U with the base parser.

3. Transform the automatically parsed trees of U to one
or more word-level tagging schemes (§ 4.1).

4. Train (a) contextualized embedding model(s) to predict
the word-level tagging(s) of U (§ 4.1).

5. Integrate the representation model(s) of step 4 with the
base parser, and train the resulting parser on L (§ 4.2).

the labeled dataset L. Once trained, the base
parser can output a dependency tree for each of the
unlabeled sentences in U (step 2). We then trans-
form the automatic dependency trees generated for
U into one or more word-level tagging schemes
(step 3). In § 4.1 we elaborate on this step. Then,
we train a BiLSTM sequence tagger to predict the
word-level tags of U (step 4). If the automatic
parse trees are transformed to more than one tag-
ging scheme, we train multiple BiLTMs – one for
each scheme. Finally, we construct a new parser
by integrating the base parser with the representa-
tion BiLSTM(s), and train the final parser on the
labeled dataset L (step 5). In this stage, the base
parser parameters are randomly initialized, while
the parameters of the representation BiLSTM(s)
are initialized to those learned in step 4.

We next discuss the three word-level tagging
schemes derived from the dependency trees (step
3), and then the gating mechanism employed in
order to compose the hybrid parser (step 5).

4.1 Representation Learning (Steps 3 and 4)

In what follows we present the three word-level
tagging schemes we consider at step 3 of the
DCST algorithm. Transferring the parse trees into
tagging schemes is the key for populating informa-

tion from the original (base) parser on unlabeled
data, in a way that can later be re-encoded to the
parser through its word embedding layers. The
key challenge we face when implementing this
idea is the transformation of dependency trees into
word level tags that preserve important aspects of
the information encoded in the trees.

We consider tagging schemes that maintain var-
ious aspects of the structural information encoded
in the tree. Particularly, we start from two tag-
ging schemes that even if fully predicted still leave
ambiguity about the actual parse tree: the number
of direct dependants each word has and the dis-
tance of each word from the root of the tree. We
then consider a tagging scheme, referred to as the
Relative POS-based scheme, from which the de-
pendency tree can be fully reconstructed. While
other tagging schemes can definitely be proposed,
we believe that the ones we consider here span a
range of possibilities that allows us to explore the
validity of our DCST framework.

More specifically, the tagging schemes we con-
sider are defined as follows:

Number of Children Each word is tagged with
the number of its children in the dependency tree.
We consider only direct children, rather than other
descendants, which is equivalent to counting the
number of outgoing edges of the word in the tree.

Distance from the Root Each word is tagged
with its minimal distance from the root of the tree.
For example, if the arc (ROOT , j) is included in
the tree, the distance of the j’th word from the
ROOT is 1. Likewise, if (ROOT , j) is not in-
cluded but (ROOT ,i) and (i,j) are, then j’th dis-
tance is 2.

Relative POS-based Encoding Each word is
tagged with its head word according to the rela-
tive POS-based scheme (Spoustová and Spousta,
2010; Strzyz et al., 2019) The head of a word is
encoded by a pair (p, e) ∈ P × [−m+ 1,m− 1],
where P is the set of all possible parts of speech
and m is the sentence length. For a positive (nega-
tive) number e and a POS p, the pair indicates that
the head of the represented word is the e’th word to
its right (left) with the POS tag p. To avoid sparsity
we coarsen the POS tags related to nouns, proper
names, verbs, adjectives, punctuation-marks and
brackets into one tag per category.

Although this word-level tagging scheme was
introduced as means of formulating dependency



Figure 2: The sequence tagger applied to automat-
ically parsed sentences in U (Algorithm 1, step 4).
The tagger predicts for each word its label accord-
ing to one of the three tagging schemes: Number
of Children (blue), Distance from the Root (red),
and Relative POS-based Encoding (black). The
curved arrows sketch the gold dependency tree
from which the word-level tags are derived.

parsing as a sequence tagging task, in practice
sequence models trained on this scheme are not
competitive with state-of-the-art parsers and of-
ten generate invalid tree structures (Strzyz et al.,
2019). Here we investigate the power of this
scheme as part of a self-training algorithm.

The Sequence Tagger Our goal is to encode the
information in the automatically parsed trees into
a model that can be integrated with the parser at
later stages. This is why we choose to transform
the parse trees into word-level tagging schemes
that can be learned accurately and efficiently by
a sequence tagger. Note that efficiency plays a key
role in the lightly-supervised and domain adapta-
tion setups we consider, as large amounts of un-
labeled data should compensate for the lack of la-
beled training data from the target domain.

We hence choose a simple sequence tagging ar-
chitecture, depicted in Figure 2. The encoder Etgr

is a BiLSTM, similarly to Eparser of the parser.
The decoder is composed of two fully connected
(FC) layers with dropout (Srivastava et al., 2014)
and an exponential linear unit (ELU) activation
function (Clevert et al., 2016), followed by a final
softmax layer that outputs the tag probabilities.

Figure 3: An illustration of the hybrid parser
with three auxiliary sequence taggers. An input
word vector is passed through the parser encoder
(E(1)

parser) and the three pre-trained tagger encoders
(E(2)

tgr−E
(4)
tgr). The gating mechanism (Gate) com-

putes a weighted average of the hidden vectors. Fi-
nally, the output of the gating mechanism is passed
to the BiAFFINE decoder to predict the arc and la-
bel scores for each word pair.

4.2 The Final Hybrid Parser (Step 5)

In step 5, the final step of Algorithm 1, we inte-
grate the BiLSTM of the sequence tagger, which
encodes the information in the automatically gen-
erated dependency trees, with the base parser. Im-
portantly, when doing so we initialize the BiLSTM
weights to those to which it converged at step 4.
The parameters of the base (BiAFFINE) parser, in
contrast, are randomly initialized. The resulting
hybrid parser is then trained on the labeled data in
L. This way, the final model integrates the infor-
mation from both L and the automatic tagging of
U, generated in step 2 and 3.

We next describe how the encoders of the se-
quence tagger and the BiAFFINE parser, Etgr and
Eparser, are integrated through a gating mecha-
nism, similar to that of Sato et al. (2017).

The Gating Mechanism Given an input word
vector ft (§ 3), the gating mechanism learns to
scale between the BiLSTM encoder of the parser
to that of the sequence tagger (Figure 3):

at = σ(Wg[Eparser(ft);Etgr(ft)] + bg),

gt = at � Eparser(ft) + (1− at)� Etgr(ft).

where � is the element-wise product, σ is the
sigmoid function, and Wg and bg are the gating



mechanism parameters. The combined vector gt
is then fed to the parser’s decoder.

Extension to n ≥ 2 Sequence Taggers We can
naturally extend our hybrid parser to support n
auxiliary taggers (see again Figure 3). Given n
taggers trained on n different tagging schemes, the
gating mechanism is modified to be:

s
(i)
t =

W (i)
g [E(1)

parser(ft);E
(2)
tgr(ft); . . . ;E

(n+1)
tgr (ft)] + b(i)g ,

a
(i)
t =

exp(s
(i)
t )∑n+1

j=1 exp(s
(j)
t )

,

gt = a
(1)
t � E(1)

parser(ft) +
n+1∑
i=2

a
(i)
t � E

(i)
tgr(ft).

This extension provides a richer representation
of the automatic tree structures, as every tagging
scheme captures a different aspect of the trees. In-
deed, in most of our experiments, when integrating
the base parser with our three proposed schemes,
the resulting model was superior to models that
consider a single tagging scheme.

5 Evaluation Setups

This paper focuses on exploiting unlabeled data
in order to improve the accuracy of a supervised
parser. We expect this approach to be most useful
when the parser does not have sufficient labeled
data for training, or when the labeled training data
do not come from the same distribution as the test
data. We hence focus on two setups:

The Lightly Supervised In-domain Setup In
this setup we are given a small labeled dataset
L = {(xli, yli)}

|L|
i=1 of sentences and their gold

dependency trees and a large unlabeled dataset
U = {(xui )}

|U|
i=1 of sentences coming from the

same domain, where |L| � |U|. Our goal is to
parse sentences from the domain of L and U.

The Unsupervised Domain Adaptation Setup
In this setup we are given a labeled source domain
dataset L = {(xli, yli)}

|L|
i=1 of sentences and their

gold dependency trees, and an unlabeled dataset
U = {(xui )}

|U|
i=1 of sentences from a different tar-

get domain. Unlike the lightly-supervised setup,
here L may be large enough to train a high quality
parser as long as the training and test sets come
from the same domain. However, our goal here is
to parse sentences from the target domain.

6 Experiments

We experiment with the task of dependency pars-
ing, in two setups: (a) lightly supervised in-
domain and (b) unsupervised domain adaptation.

Data We consider two datasets: (a) The English
OntoNotes 5.0 (Hovy et al., 2006) corpus. This
corpus consists of text from 7 domains: broad-
cast conversation (bc: 11877 training, 2115 devel-
opment and 2209 test sentences), broadcast news
(bn: 10681, 1293, 1355), magazine (mz: 6771,
640, 778), news (nw: 34967, 5894, 2325), bible
(pt: 21518, 1778, 1867), telephone conversation
(tc: 12889, 1632, 1364) and web (wb: 15639,
2264, 1683).2 The corpus is annotated with con-
stituency parse trees and POS tags, as well as
other labels that we do not use in our experi-
ments. The constituency trees were converted to
dependency trees using the Elitcloud conversion
tool.3 In the lightly supervised setup we exper-
iment with each domain separately. We further
utilize this corpus in our domain adaptation ex-
periments. (b) The Universal Dependencies (UD)
dataset (McDonald et al., 2013; Nivre et al., 2016,
2018). This corpus contains more than 100 cor-
pora of over 70 languages, annotated with depen-
dency trees and universal POS tags. For the lightly
supervised setup we chose 10 low-resource lan-
guages that have no more than 10K training sen-
tences: Old Church Slavonic (cu), Danish (da),
Persian (fa), Indonesian (id), Latvian (lv), Slove-
nian (sl), Swedish (sv), Turkish (tr), Urdu (ur)
and Vietnamese (vi), and performed mono-lingual
experiments with each.4 For the domain adapta-
tion setup we experiment with 5 languages, con-
sidering two corpora from different domains for
each: Czech (cs_fictree: fiction, cs_pdt: news
and science), Galician (gl_ctg: science and le-
gal, gl_treegal: news), Italian (it_isdt: legal, news
and wiki, it_postwita: social media), Romanian
(ro_nonstandard: poetry and bible, ro_rrt: news,
literature, science, legal and wiki) and Swedish
(sv_lines: literature and politics, sv_talbanken:
news and textbooks).

2We removed wb test set sentences where all words are
POS tagged with "XX".

3https://github.com/elitcloud/
elit-java.

4In case a language has multiple corpora, our training, de-
velopment and test sets are concatenations of the correspond-
ing sets in these corpora.

https://github.com/elitcloud/elit-java
https://github.com/elitcloud/elit-java


Training Setups For the lightly supervised
setup we performed experiments with the 7
OntoNotes domains and the 10 UD corpora, for
a total of 17 in-domain setups. For each setup we
consider three settings that differ from each other
in the size of the randomly selected labeled train-
ing and development sets: 100, 500 or 1000.5 We
use the original test sets for evaluation, and the
remaining training and development sentences as
unlabeled data.

For the English unsupervised domain adapta-
tion setup, we consider the news (nw) section of
OntoNotes 5.0 as the source domain, and the re-
maining sections as the target domains. The nw
training and development sets are used for the
training and development of the parser, while the
unlabeled versions of the target domain training
and development sets are used for training and de-
velopment of the representation model. The final
model is evaluated on the target domain test set.

Similarly, for unsupervised domain adaptation
with the UD languages, we consider within each
language one corpus as the source domain and the
other as the target domain, and apply the same
train/development/test splits as above. For each
language we run two experiments, differing in
which of the two corpora is considered the source
and which is considered the target.

For all domain adaptation experiments, when
training the final hybrid parser (Figure 3) we
sometimes found it useful to keep the parameters
of the BiLSTM tagger(s) fixed in order to avoid an
overfitting of the final parser to the source domain.
We treat the decision of whether or not to keep
the parameters of the tagger(s) fixed as a hyper-
parameter of the DCST models and tune it on the
development data.

We measure parsing accuracy with the stan-
dard Unlabeled and Labeled Attachment Scores
(UAS and LAS), and measure statistical signifi-
cance with the t-test (following Dror et al. (2018)).

Models and Baselines We consider four vari-
ants of our DCST algorithm, differing on the word
tagging scheme on which the BiLSTM of step
4 is trained (§ 4.1): DCST-NC: with the Num-
ber of Children scheme, DCST-DR: with the Dis-
tance from the Root scheme, DCST-RPE: with the
Relative POS-based Encoding scheme and DCST-
ENS where the parser is integrated with three BiL-

5In languages where the development set was smaller than
1000 sentences we used the entire development set.

STMs, one for each scheme (where ENS stands for
ensemble) (§ 4.2).

To put the results of our DCST algorithm in
context, we compare its performance to the fol-
lowing baselines. Base: the BiAFFINE parser (§ 3),
trained on the labeled training data. Base-FS: the
BiAFFINE parser (§ 3), trained on all the labeled
data available in the full training set of the cor-
pus. In the domain adaptation setups Base-FS is
trained on the entire training set of the target do-
main. This baseline can be thought of as an upper
bound on the results of a lightly-supervised learn-
ing or domain-adaptation method. Base + Ran-
dom Gating (RG): a randomly initialized BiL-
STM is integrated to the BiAFFINE parser through
the gating mechanism, and the resulting model is
trained on the labeled training data. We compare
to this baseline in order to quantify the effect of
the added parameters of the BiLSTM and the gat-
ing mechanism, when this mechanism does not in-
ject any information from unlabeled data. Self-
training: the traditional self-training procedure.
We first train the Base parser on the labeled train-
ing data, then use the trained parser to parse the
unlabeled data, and finally re-train the Base parser
on both the manual and automatic trees.

We would also like to test the value of train-
ing a representation model to predict the depen-
dency labeling schemes of § 4.1, in comparison
to the now standard pre-training with a language
modeling objective. Hence, we experiment with a
variant of DCST where the BiLSTM of step 4 is
trained as a language model (DCST-LM). Finally,
we compare to the cross-view training algorithm
(CVT) (Clark et al., 2018), that was developed for
semi-supervised learning with DNNs. 6

Hyper-parameters We employ the BiAFFINE

parser implementation of Ma et al. (2018). 7 We
consider the following hyper-parameters for the
parser and the sequence tagger: 100 epochs with
an early stopping criterion according to the devel-
opment set, the ADAM optimizer (Kingma and
Ba, 2015), a batch size of 16, a learning rate of
0.002 and dropout probabilities of 0.33.

The 3-layer stacked BiLSTMs of the parser and
the sequence tagger generate hidden representa-
tions of size 1024. The fully connected layers of

6https://github.com/tensorflow/models/
tree/master/research/cvt_text.

7https://github.com/XuezheMax/
NeuroNLP2.

https://github.com/tensorflow/models/tree/master/research/cvt_text
https://github.com/tensorflow/models/tree/master/research/cvt_text
https://github.com/XuezheMax/NeuroNLP2
https://github.com/XuezheMax/NeuroNLP2


the tagger are of size 128 (first layer) and 64 (sec-
ond layer). All other parser hyper-parameters are
identical to those of the original implementation.

We employ 300-dimensional pre-trained word
embeddings: GloVe (Pennington et al., 2014) 8 for
English and FastText (Grave et al., 2018) 9 for the
UD languages. Character and POS embeddings
are 100-dimensional and are initialized to random
normal vectors. CVT is run for 15K gradient up-
date steps.

7 Results

Table 1 presents the lightly supervised OntoNotes
results when training with 500 labeled sentences,
while Table 2 presents the UD results in the same
setup. Tables 3 and 4 report domain adaptation
results for the 6 OntoNotes and 10 UD target do-
mains, respectively. Underscored results are sig-
nificant compared to the highest scoring baseline,
based on t-test with p < 0.05.10

DCST with Syntactic Self-training DCST-
ENS, our model that integrates all three syntac-
tically self-trained BiLSTMs, is clearly the best
model. In the lightly supervised setup, it performs
best on 5 of 7 OntoNotes domains and on 8 of
10 UD corpora (with the UAS measure). In the
cases where DCST-ENS is not the best perform-
ing model, it is the second or third best model.
In the English and multilingual domain adaptation
setups, DCST-ENS is clearly the best performing
model, where in only 2 multilingual target do-
mains it is second.

Moreover, DCST-NC, DCST-DR and DCST-
RPE, that consider only one syntactic scheme, also
excel in the lightly supervised setup. They outper-
form all the baselines (models presented above the
top separating lines in the tables) in the UD ex-
periments, and DCST-RPE and DCST-DR outper-
form all the baselines in 5 of 7 Ontonotes domains
(with the LAS measure). In the domain adaptation
setup, however, they are on par with the strongest
baselines, which indicates the importance of ex-
ploiting the information in all three schemes in this
setup (results are not shown in Tables 3 and 4 in
order to save space).

8http://nlp.stanford.edu/data/glove.
840B.300d.zip.

9https://fasttext.cc/docs/en/
crawl-vectors.html.

10For this comparison, Base-FS is not considered a base-
line, but an upper bound.

Note, that with few exceptions, DCST-NC is
the least effective method among the syntactically
self-trained DCST alternatives. This indicates that
encoding the number of children each word has in
the dependency tree is not a sufficiently informa-
tive view of the tree.

Comparison to Baselines The CVT algorithm
performs quite well in the English OntoNotes
lightly supervised setup – it is the best performing
model on two domains (nw and pt) and the best
baseline for three other domains when consider-
ing the UAS measure (bc, bn and tc). However,
its performance substantially degrades in domain
adaptation. Particularly, in 5 out of 6 OntoNotes
setups and in 9 out of 10 UD setups it is the worst
performing model. Moreover, CVT is the worst
performing model in the lightly supervised multi-
lingual setup.

Overall, this recently proposed model that
demonstrated strong results across several NLP
tasks, does not rival our DCST models with syn-
tactic self-training in our experimental tasks. No-
tice that Clark et al. (2018) did not experiment in
domain adaptation setups and did not consider lan-
guages other than English. Our results suggest that
in these cases DCST with syntactic self-training is
a better alternative.

We next evaluate the impact of the differ-
ent components of our model. First, compari-
son with DCST-LM – the version of our model
where the syntactically self-trained BiLSTM is re-
placed with a BiLSTM trained on the same un-
labeled data but with a language modeling ob-
jective, allows us to evaluate the importance of
the self-generated syntactic signal. The results
are conclusive: in all our four setups - English
and multilingual lightly-supervised, and English
and multilingual domain adaptation, DCST-LM
is outperformed by DCST-ENS that considers all
three self-trained BiLSTMs. DCST-LM is also
consistently outperformed by DCST-RPE, DCST-
DR and DCST-NC that consider only one syn-
tactic annotation scheme, except from a few En-
glish lightly-supervised cases where it outper-
forms DCST-NC by a very small margin. Syntac-
tic self-supervision hence provides better means
of exploiting the unlabeled data, compered to the
standard language modeling alternative.

Another question is whether the BiLSTM mod-
els should be trained at all. Indeed, in recent
papers untrained LSTMs with random weights

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html


bc bn mz nw pt tc wb

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Base 74.54 70.77 80.57 77.63 81.47 78.41 80.40 77.56 86.95 83.86 72.15 68.34 78.74 73.24
Base+RG 77.10 73.45 81.90 79.06 83.02 80.29 81.80 79.24 88.13 85.42 73.87 69.97 78.93 75.37
DCST-LM 75.94 72.33 80.01 76.96 82.50 79.53 80.33 77.57 87.53 84.56 72.16 68.30 77.09 73.49

Self-Training 74.64 71.18 82.35 79.75 83.44 80.86 81.93 79.43 87.50 84.52 69.70 66.62 79.18 75.86
CVT 78.47 73.54 82.76 78.19 82.90 78.56 85.55 82.30 90.36 87.05 75.36 69.96 78.03 73.10

DCST-NC 78.21 74.62 82.32 79.52 83.52 80.61 81.95 79.17 88.83 85.62 75.35 71.05 78.76 75.10
DCST-DR 78.61 74.80 83.32 80.26 84.27 81.15 82.67 79.74 88.90 85.66 75.05 70.82 79.80 76.12
DCST-RPE 78.70 75.11 83.07 80.41 84.16 81.62 83.02 80.45 88.95 85.96 75.35 71.06 80.25 76.91
DCST-ENS 78.95 75.43 83.52 80.93 84.67 81.99 82.89 80.41 89.38 86.47 76.47 72.54 80.52 77.32

Base-FS 86.23 84.49 89.41 88.17 89.19 87.80 89.29 88.01 94.08 92.83 77.12 75.36 87.23 85.56

Table 1: Lightly supervised OntoNotes results with 500 training sentences. Base-FS is an upper bound.

cu da fa id lv sl sv tr ur vi

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Base 75.87 67.25 78.13 74.16 82.54 78.59 72.57 57.25 72.81 65.66 76.00 69.28 78.58 72.78 56.07 39.37 84.49 78.10 67.18 62.51
Base+RG 77.98 69.01 80.21 76.11 84.74 80.83 73.18 57.56 74.51 67.60 78.18 71.27 79.90 73.70 58.42 40.32 86.18 79.65 68.75 64.64
DCST-LM 77.67 68.90 80.23 76.06 83.92 79.89 72.61 57.36 73.89 66.59 76.90 70.12 78.73 72.51 57.33 39.27 85.78 79.27 69.11 65.09

Self-Training 75.19 68.07 79.76 75.92 85.04 81.05 74.07 58.73 74.79 68.22 77.71 71.33 79.72 74.12 57.34 40.06 85.63 79.51 68.24 63.96
CVT 61.57 45.60 72.77 66.93 81.08 74.32 72.51 54.94 68.90 57.36 67.89 59.79 77.08 69.60 53.17 32.95 81.49 72.72 60.84 50.98

DCST-NC 78.85 69.75 81.23 76.70 85.94 81.85 74.18 58.63 76.19 68.73 79.26 72.72 81.05 75.09 58.17 39.95 86.17 79.91 69.93 65.91
DCST-DR 79.31 70.20 81.30 76.81 86.20 82.14 74.56 58.92 76.99 69.24 80.34 73.35 81.40 75.41 58.30 40.25 86.19 79.68 69.46 65.65
DCST-RPE 80.57 71.83 81.48 77.45 86.82 82.69 74.56 59.19 77.45 70.38 80.45 74.13 81.95 75.98 59.49 41.45 86.86 80.92 70.23 66.26
DCST-ENS 80.55 71.79 82.07 78.04 87.02 83.13 74.47 59.13 77.63 70.36 80.68 74.32 82.40 76.61 59.60 41.72 86.96 80.85 70.37 66.88

Base-FS 86.13 81.46 85.55 82.93 91.06 88.12 77.42 62.31 85.02 81.59 86.04 82.22 85.18 81.36 62.21 46.23 89.84 85.12 73.26 69.69

Table 2: Lightly supervised UD results with 500 training sentences. Base-FS is an upper bound.

bc bn mz pt tc wb

Model LAS LAS LAS LAS LAS LAS

Base 81.60 85.17 85.48 87.70 75.46 83.85
Base+RG 82.51 85.36 85.77 88.34 75.68 84.34
DCST-LM 82.48 85.77 86.28 89.28 75.72 84.34

Self-Training 80.61 84.52 85.38 87.69 73.62 82.82
CVT 74.81 84.90 84.49 85.71 72.10 82.31

DCST-ENS 85.96 88.02 88.55 91.62 79.97 87.38
Base-FS 84.49 88.17 87.80 92.83 75.36 85.56

Table 3: Unsupervised Domain adaptation
OntoNotes results. Base-FS is an upper bound.

substantially enhanced model performance (Wang
et al., 2019; Zhang and Bowman, 2018; Tenney
et al., 2019; Wieting and Kiela, 2019).

Our results lead to two conclusions. Firstly,
Base+RG, the model that is identical to the syn-
tactically trained DCST except that the BiAFFINE

parser is integrated with a randomly initialized
BiLSTM through our gating mechanism, is con-
sistently outperformed by all our syntactically
self-trained DCST models, with very few excep-
tions. Secondly, in line with the conclusions of
the aforementioned papers, Base+RG is one of the
strongest baselines in our experiments. Perhaps
most importantly, in most experiments this model
outperforms the Base parser – indicating the pos-
itive impact of the randomly initialized represen-

tation models. Moreover, it is the strongest base-
line in 2 English domain adaptation setups and in
5 of 10 languages in the lightly-supervised mul-
tilingual experiments (considering the UAS mea-
sure), and is the second-best baseline in 5 out of
7 English lightly-supervised setups (again consid-
ering the UAS measure). The growing evidence
for the positive impact of such randomly initial-
ized models should motivate further investigation
of the mechanism that underlies their success.

Finally, our results demonstrate the limited
power of traditional self-training: In English do-
main adaptation it harms or does not improve the
Base parser; in multilingual domain adaptation it
is the best model in 2 cases; and it is the best base-
line in 2 of the 7 English lightly-supervised setups
and in 3 of the 10 multilingual lightly-supervised
setups. This supports our motivation to propose an
improved self-training framework.

8 Ablation Analysis and Discussion

Impact of Training set Size Figure 4 presents
the impact of the DCST-ENS method on the
BiAFFINE parser, in the seven lightly-supervised
English setups, as a function of the labeled train-
ing set size of the parser. Clearly, the positive
impact is substantially stronger for smaller train-
ing sets. Particularly, when the parser is trained
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Model LAS LAS LAS LAS LAS LAS LAS LAS LAS LAS

Base 69.92 81.83 59.05 60.31 67.82 80.72 65.03 62.75 77.08 77.93
Base+RG 73.12 80.86 58.97 60.52 67.54 80.36 65.93 61.50 77.58 78.04
DCST-LM 73.59 83.33 59.41 60.54 67.52 80.95 65.19 62.46 77.40 77.62

Self-Training 69.50 81.53 59.67 61.41 68.02 82.01 66.47 63.84 77.60 77.64
CVT 59.77 81.53 51.12 50.31 58.60 70.07 50.82 45.15 45.25 62.87

DCST-ENS 75.28 86.50 59.75 60.98 69.13 83.06 67.65 63.46 77.86 78.97
Base-FS 84.46 83.70 84.44 78.09 90.02 81.22 81.71 84.99 82.43 86.67

Table 4: Unsupervised Domain adaptation UD results. Base-FS is an upper bound.

Figure 4: UAS gap between DCST-ENS and the
Base parser, as a function of the training set size
(100/500/1000), across OntoNotes domains.

with 100 sentences (the green bar) the improve-
ment is higher than 5 UAS points in 6 of 7 cases,
among which in 2 (nw and wb) it is higher than
8 UAS points. For 500 training sentences the per-
formance gap drops to 2-4 UAS points, while for
1000 training sentences it is 1-3 points.

This pattern is in line with previous literature
on the impact of training methods designed for
the lightly-supervised setup, and particularly for
self-training when applied to constituency pars-
ing (Reichart and Rappoport, 2007). We note that
many research papers failed to improve depen-
dency parsing with traditional self-training even
for very small training set sizes (Rush et al.,
2012). We also note that syntactically self-trained
DCST consistently improves the BiAFFINE parser
in our domain adaptation experiments, although
the entire training set of the news (nw) section of
OntoNotes is used for training.

Impact of Self-training Quality We next aim
to test the connection between the accuracy of the
self-trained sequence taggers and the quality of
the BiAFFINE parser when integrated with the BiL-
STM encoders of these taggers. Ideally, we would
expect that the higher the quality of the BiLSTM,

Figure 5: Auxiliary task accuracy scores of each
BiLSTM tagger vs. the LAS score of the BiAFFINE

parser when integrated with that BiLSTM. The
BiLSTM scores are computed on the test sets
and reflect the capability of the BiLSTM that was
trained on unlabeled data with syntactic signal ex-
tracted from the base parser’s trees (or as a lan-
guage model for DCST-LM) to properly tag the
test sentences. The points correspond to sentence
scores across all OntoNotes 5.0 test sets, and the
heat map presents the frequency of each point.

the more positive its impact on the parser. This
would indicate that the improvement we see with
the DCST models indeed results from the informa-
tion encoded in the self-trained taggers.

To test this hypothesis, Figure 5 plots, for each
of the BiLSTM taggers considered in this paper,
the sentence-level accuracy scores of the tagger
when applied to the OntoNotes test sets vs. the
LAS scores of the BiAFFINE parser that was inte-
grated with the corresponding BiLSTM, when that
parser was applied to the same test sentences. In
such a plot, if the regression line that fits the points
has an R-squared (R2) value of 1, this indicates
a positive linear relation between the self-trained
tagger and the parser quality.

The resulting R2 values are well aligned with



the relative quality of the DCST models. Particu-
larly, DCST-LM, the least efficient method where
the tagger is trained as a language model rather
than on a syntactic signal, has an R2 of 0.03.
DCST-DR and DCST-NC, which are the next in
terms of parsing quality (Table 1), have R2 values
of 0.36 and 0.47, respectively, although DCST-DR
performs slightly better. Finally, DCST-RPE, the
best performing model among the four in all cases
but two, has an R2 value of 0.76. These results
provide a positive indication to the hypothesis that
the improved parsing quality is caused by the rep-
resentation model and is not a mere artifact.

Model AD-NC AD-DR AD-PDH POS Head Error

OntoNotes
Base 0.305 0.539 1.371 0.162

DCST-NC 0.274 0.510 1.196 0.146
DCST-DR 0.264 0.460 1.099 0.141
DCST-RPE 0.263 0.475 1.128 0.137
DCST-ENS 0.257 0.458 1.121 0.135

UD
Base 0.366 0.600 1.377 0.163

DCST-NC 0.327 0.551 1.168 0.148
DCST-DR 0.322 0.538 1.135 0.146
DCST-RPE 0.316 0.534 1.137 0.141
DCST-ENS 0.312 0.524 1.128 0.139

Table 5: Tagging scheme error analysis.

Tagging Scheme Quality Analysis We next aim
to shed more light on the quality of the tagging
schemes with which we train our BiLSTM tag-
gers. We perform an error analysis on the parse
trees produced by the final hybrid parser (Figure
3), when each of the schemes is employed in the
BiLSTM tagger training step during the lightly-
supervised setups. The metrics we compute corre-
spond to the three tagging schemes, and our goal is
to examine whether each of the self-trained repre-
sentation models (BiLSTMs) improves the capa-
bility of the final parser to capture the information
encoded in its tagging scheme.

Particularly, we consider four metrics: Absolute
Difference of Number of Children (AD-NC): The
absolute difference between the number of chil-
dren a word has in the gold tree and the corre-
sponding number in the predicted tree; Absolute
Difference of Distance from the Root (AD-DR):
The absolute difference between the distance of a
word from the root in the gold tree and the corre-
sponding distance in the predicted tree; Absolute
Difference of Positional Distance from the Head
(AD-PDH): The absolute difference between the
positional distance of a word from its head word

according to the gold tree and the corresponding
number according to the predicted tree (Kiper-
wasser and Ballesteros, 2018) (we count the words
that separate the head from the modifier in the
sentence, considering the distance negative if the
word is to the right of its head); and POS Head
Error: an indicator function which returns 0 if the
POS tag of the head word of a given word accord-
ing to the gold tree is identical to the correspond-
ing POS tag in the predicted tree, and 1 otherwise.

For all the metrics we report the mean value
across all words in our test sets. The values of AD-
NC, AD-DR and AD-PDH are hence in the [0,M ]
range, where M is the length of the longest sen-
tence in the corpus. The values of the POS Head
Error are in the [0, 1] range. For all metrics lower
values indicate that the relevant information has
been better captured by the final hybrid parser.

Table 5 presents a comparison between the Base
parser to our DCST algorithms. All in all, the
DCST models outperform the Base parser across
all comparisons, with DCST-ENS being the best
model in all 8 cases except from one. The analy-
sis indicates that in some cases a BiLSTM tagger
with a given tagging scheme directly improves the
capability of the final parser to capture the corre-
sponding information. For example, DCST-DR,
whose tagging scheme considers the distance of
each word from the root of the tree, performs best
(OntoNotes) or second best (UD) on the AD-DR
metric compared to all other models except from
the DCST-ENS model that contains the DCST-DR
model as a component. Likewise, DCST-RPE, that
encodes information about the POS tag of the head
word for every word in the sentence, is the best
performing model in terms of POS Head Error. In
contrast to the relative success of DCST-RPE and
DCST-DR in improving specific capabilities of
the parser, DCST-NC, our weakest model across
experimental setups, is also the weakest DCST
model in this error analysis, even when consider-
ing the AD-NC metric that measures success in
predicting the number of children a word has in
the tree.

Sentence Length Adaptation We next aim to
test whether DCST can enhance a parser trained
on short sentences so that it can better parse long
sentences. Dependency parsers perform better on
short sentences, and we would expect self-training
to bring in high quality syntactic information from
automatically parsed long sentences.



bc bn mz nw pt tc wb

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Base+ELMo 77.96 73.97 83.12 80.18 84.62 81.37 83.09 80.35 88.82 85.55 73.84 69.23 79.67 75.77
Base+ELMo+G 74.47 70.91 80.42 77.45 81.15 78.41 80.91 78.24 87.73 84.92 70.19 66.78 76.02 72.68

DCST-ENS+ELMo 80.00 75.94 85.02 81.98 86.24 82.54 84.56 81.91 90.27 86.86 77.68 72.72 82.00 77.93

Table 6: Lightly supervised OntoNotes results with ELMo embeddings.

cu da fa id lv sl sv tr ur vi

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Base+ELMo 72.35 61.43 80.32 76.86 85.84 81.71 73.68 58.01 79.93 73.91 76.40 67.52 81.51 76.10 53.36 34.67 86.11 79.91 71.28 67.04
Base+ELMo+G 75.47 67.07 79.12 75.05 83.09 79.43 73.00 57.69 72.86 67.13 74.99 69.75 79.66 74.29 53.87 39.30 84.83 78.53 66.57 61.56

DCST-ENS+ELMo 73.90 61.62 82.29 78.49 87.87 83.25 74.95 58.55 82.47 76.41 79.69 70.36 83.93 78.27 59.35 36.81 87.51 81.53 72.76 68.48

Table 7: Lightly supervised UD results with ELMo embeddings.

Model UAS LAS
Base 54.86 52.65

DCST-LM 55.26 52.63
Self-Training 54.22 52.16

CVT 50.61 46.13

DCST-ENS 58.85 56.64

Table 8: Sentence length adaptation results.

For this aim, we replicate the Onotnotes wb in-
domain experiment, except that we train the parser
on all training set sentences of up to 10 words, use
the training set sentences with more than 10 words
as unlabeled data for sequence tagger training (Al-
gorithm 1, step 4), and test the final parser on all
test sentences with more than 10 words.

Table 8 shows that DCST-ENS improves the
Base parser in this setup by 3.99 UAS and LAS
points. DCST-LM achieves only a marginal UAS
improvement while CVT substantially harms the
parser. This result further supports the value of our
methods and encourages future research in various
under-resourced setups.

ELMo Embeddings Finally, we turn to investi-
gate the impact of deep contextualized word em-
beddings, such as ELMo (Peters et al., 2018), on
the base parser and on the DCST-ENS model.
To this end, we replace the Glove/FastText word
embeddings from our original experiments with
the multilingual ELMo word embeddings of Che
et al. (2018). We follow Che et al. (2018) and
define the ELMo word embedding for word i as:
wi = WELMo · 13

∑2
j=0 h

ELMo
i,j , where WELMo

is a trainable parameter and hELMo
i,j is the hidden

representation for word i in the j’th BiLSTM layer
of the ELMo model, which remains fixed through-
out all experiments.

We experiment with three models: Base +

ELMo: the BiAFFINE parser fed by the ELMo
word embeddings and trained on the labeled train-
ing data; Base + ELMo + Gating (G): The
BiAFFINE parser fed by our original word embed-
dings, and ELMo word embeddings are integrated
through our gating mechanism. Training is done
on the labeled training data only; and DCST-ENS
+ ELMo: our ensemble parser where the BiLSTM
taggers and the Base parser are fed by the ELMo
word embeddings.

Tables 6 (OntoNotes) and 7 (UD) summarize
the results in the lightly supervised setups with
500 training sentences. Like in previous experi-
ments, DCST-ENS+ELMo is the best performing
model in both setups. While Base+ELMo+G is
superior in the cu and tr (LAS) setups, it is in-
ferior in all OntoNotes domains. Note also that
DCST-ENS+ELMo improves the UAS results of
DCST-ENS from tables 1 and 2 on all OntoNotes
domains and on 7 out of 10 UD languages.

9 Conclusions

We proposed a new self-training framework for
dependency parsing. Our DCST approach is based
on the integration of (a) contextualized embedding
model(s) into a neural dependency parser, where
the embedding models are trained on word tag-
ging schemes extracted from the trees generated
by the base parser on unlabeled data. In multi-
lingual lightly-supervised and domain adaptation
experiments, our models consistently outperform
strong baselines and previous models.

In future work we intend to explore improved
word tagging schemes, sequence tagging architec-
tures and integration mechanisms. We shall also
consider cross-language learning where the lexi-
cal gap between languages should be overcome.
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